Table S4. Results of hierarchical partitioning analysis of DOC compound-specific characteristics as predictors for mass transfer to the streambed. Given are percentage independent contributions applicable to each single variable as predictor of compound-specific mass transfer coefficients (n=276). The sum of independent contributions corresponds to R^2 of the full model (given in the last line). Predictor variables are: Intransformed relative peak intensity in the inflow (*rI*_{inflow}), aromaticity index (*AI*), indication of aromatic structures (*AI*>0.5), ratio of oxygen to carbon atoms (*O:C*), ratio of hydrogen to carbon atoms (*H:C*), presence of nitrogen (*N*), molecule size (*m/z*). Significance was tested using 500 random permutations of values of each variable and calculating critical percentiles of distributions of randomized independent contributions (***...P<0.001, **...P<0.01, *...P<0.05, ^{ns}...non-significant). Subsets of predictor variables identified by the Akaike and Schwarz Bayesian Information Criteria to define the most parsimonious model are marked by ^{AIC} and ^{BIC}.

1	Height of bedforms in the mesocosms – flow heterogeneity treatment					
	no bedforms	2 cm	4 cm	6 cm	8 cm	10 cm
<i>rl</i> _{inflow}	43.2*** ^{BIC,AIC}	60.2*** ^{BIC,AIC}			63.7*** ^{BIC,AIC}	45.5*** ^{BIC,AIC}
0:C	30.7*** ^{BIC,AIC}	17.1*** ^{BIC,AIC}	12.7*** ^{BIC,AIC}	30.9*** ^{BIC,AIC}	10.6** ^{BIC,AIC}	22.3*** ^{BIC,AIC}
H:C	9.1*** ^{AIC}	8.4**	6.3**	24.9*** ^{BIC,AIC}		18.3*** ^{BIC,AIC}
AI>0.5	8.4*** ^{BIC,AIC}	9.1** ^{BIC,AIC}	8.1** ^{BIC,AIC}	6.8** ^{AIC}	11.2** ^{BIC,AIC}	10.1** ^{AIC}
m/z	5.5** ^{AIC}	0.7 ^{ns}	2.7 ^{ns}	0.6 ^{ns}	0.8 ^{ns}	1.2 ^{ns}
AI	2.1 ^{ns}	2.4 ^{ns}	2.4 ^{ns}	2.7 ^{ns}	1.5 ^{ns}	1.9 ^{ns}
Ν	1.1 ^{ns}	2.2 ^{ns}	2.7 ^{ns}	0.7 ^{ns}	1.1 ^{ns}	0.7 ^{ns}
R^2	0.48	0.31	0.38	0.44	0.27	0.26