Table S6. Results of flume level (γ) biodiversity partitioning into independent orthogonal components α and β , or richness and evenness. The table gives slopes b₁, coefficients of determination (r²) and significance levels of linear models of diversity measures on flow heterogeneity (*SD*_{Rxyz}). γ -, α -, β -diversity and Hill-evenness were computed for Hill exponents q = 1 (i.e., all OTU's equally weighed by their frequency) and q = 2 (i.e., index is disproportionately sensitive towards common OTU's). Computations for q = 0 (i.e., index is maximally sensitive towards rare OTU's) are equivalent to richness. All diversity indices except Pielou's evenness and mean Bray-Curtis dissimilarity were expressed as numbers equivalents. Full and reduced (red.) set refer to use of all OTUs detected by TRFLP-fingerprinting (full set) or conservative reanalysis using a reduced dataset limited to taxa found at all microhabitats (=samples) at each date which effectively limits the analysis to an investigation of evenness differences. All data standardised and pooled from 4 sampling dates, total sample size = 16 per flume, significant relationships printed bold.

	Hill exponent $q = 1$	Hill exponent $q = 2$
	Shannon entropy	Gini-Simpson coefficient
γ -diversity, full set	$b_1 = +0.06, r^2 = 0.01$	$b_1 = +0.12, r^2 = 0.05$
	P = 0.62	P = 0.32
γ -diversity, red. set	$b_1 = +0.14, r^2 = 0.06$	$b_1 = +0.13, r^2 = 0.05$
	P = 0.35	P = 0.36
α -diversity, full set	$b_1 = +0.07, r^2 = 0.01$	$b_1 = +0.12, r^2 = 0.05$
	P = 0.57	P = 0.31
α -diversity, red. set	$b_1 = +0.07, r^2 = 0.01$	$b_1 = +0.08, r^2 = 0.02$
	P = 0.63	P = 0.59
β-diversity, full set	$b_1 = +0.31, r^2 = 0.30$	$\mathbf{b}_1 = +0.37, \mathbf{r}^2 = 0.41$
	P < 0.01	P < 0.001
β-diversity, red. set	$b_1 = +0.45, r^2 = 0.63$	$\mathbf{b}_1 = +0.46, \mathbf{r}^2 = 0.64$
	P < 0.001	P < 0.001
evenness (Hill) – full set	$b_1 = -0.02, r^2 = 0.001$	$b_1 = -0.06, r^2 = 0.01$
	P = 0.88	P = 0.64
evenness (Hill) – red. set	same as γ-diversity	same as γ-diversity
richness (Hill exponent $q = 0$)	$\mathbf{b}_1 = +0.04, \mathbf{r}^2 \; = 0.005$	
	P = 0.74	
evenness (Pielou) – full set	$b_1 = +0.22, r^2 = 0.16$	
	P = 0.06	
evenness (Pielou) – red. set	$b_1 = +0.14, r^2 = 0.06$	
	P = 0.34	
mean Bray-Curtis	$b_1 = +0.41, r^2 = 0.53$	
dissimilarity as β -diversity	P < 0.001	