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Text S1: Method Details 

Flow heterogeneity 

The mean length of the 3-dimensional velocity vector xyzR , the turbulent kinetic energy TKE, 
and the turbulence intensity TI were calculated according to the following formulas [1,2]: 

(i) 222 zyxRxyz ++= , 
where x, y and z are velocity components as Cartesian coordinates, 
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where SDx, SDy and SDz are the respective standard deviations (from n=3000 measurements) of 
the velocity components and ρ is the density of water, and 
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where SDRxyz is the respective standard deviation of the 3-D velocity (from n=3000 
measurements). TI is a measure of turbulence standardized for mean velocity, while TKE 
includes the kinetic energy of mean velocity and turbulence; both describe the fluctuating 
hydrodynamic environment experienced by the benthic biota. All raw velocity data were 
automatically processed and subjected to a filtering procedure using a batch-processing code set 
up in the statistical language R version 2.7.1. [3].  

Furthermore, rhodamine injections visualized the flow patterns along the bedforms and 
particularly the wake-induced turbulence, and flume-scale average velocity was determined 
weekly from conservative tracer additions. 

Biofilm biodiversity: Analysis of bacterial 16S rRNA gene, T-RFLP 

DNA from biofilm communities was extracted and purified with the UltraClean Soil DNA 
Isolation kit (MoBio Carlsbad, Calif.). Non-colonized ceramic coupons served as negative 
controls. The fluorescently labeled primers used for PCR of the 16S rRNA gene were FAM-
labeled 27F and JOE-labeled 1492R (Thermo Electron, Germany) [4]. PCR was performed as 
described elsewhere [5]. PCR-products were cleaned using gel electrophoresis and the QIAquick 
Gel Extraction kit (Qiagen). Restriction digests were done as described earlier [5], using 
approximately 300 ng DNA and the enzyme HhaI. The products were desalted by gel filtration 
using MultiScreen-HV 96-well plates (Millipore), loaded with Sephadex G-50 (Sigma). The 
dried product was re-suspended in 10 µl HIDI formamide and 0.5 µl size marker GS2500 Rox 
(Applied Biosystems), denatured at 95°C and immediately placed on ice. DNA fragments 
containing the fluorescently labelled forward primer were separated in a Capillary Sequencer 
3130 Xl (Applied Biosystems), and electropherograms were analyzed using the GeneMapper 
software. Restriction fragments smaller than 30bp and larger than 900bp were excluded from 
further analysis to avoid detection of primers and uncertainties of size determination. Peaks >2% 
of maximum peak height were clearly distinguishable from background noise. The relative 
contribution of the respective operational taxonomic units (OTUs) to total community was 
estimated as peak height divided by the cumulative peak height of the given sample [6,7]; T-
RFLP analysis can provide reproducible quantitative results [6,7,8]. Fragments containing the 
forward and the reverse primer were analyzed separately. T-RFLP patterns produced with the 
forward primer showed generally more heterogeneity in restriction fragment size than the 
corresponding T-RFLP patterns containing the reverse primer. All patterns and trends of 
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community composition and diversity were akin. The results presented in this study therefore 
refer to the forward fragments because of their higher information content.  

Biofilm biodiversity: Rationale and computation details for diversity partitioning and 
community composition.  

The diversity partitioning approach by Jost [9,10] has the following major advantages: (i) the 
computed β-diversity component is entirely independent of alpha-diversity, (ii) the method 
yields a continuum of beta diversity measures differing in sensitivity towards rare or common 
species, and (iii) it integrates a range of popular diversity indices used in general ecology. The 
key element of this approach is a transformation into effective numbers of species (or number 
equivalents), that yields a new measure of beta-diversity behaving in agreement with Whittaker´s 
original definition [11] of beta-diversity. This measure of beta-diversity gives the effective 
number of distinct communities. Popular measures of similarity and overlap such as the Jaccard, 
Sorensen, Horn and Morisita-Horn indices are monotonic transformations of this beta-diversity 
when calculated for two communities (or samples). We have used this approach on TRFLP-data 
(i.e., relative abundances of operational taxonomic units) with the aim to express average 
diversity within microhabitats (α) and among microhabitats (β) within each flume. Microhabitats 
(with local communities) refer to distinct positions along bedforms (section 1.3, Fig. S1a) with 
characteristic hydrodynamic conditions. While α is a measure for average diversity within local 
communities, β describes how much local communities diverge from each other. Briefly, 
computations were done as follows: 

When richness, the Shannon entropy and the Gini-Simpson coefficient are expressed in terms of 
their number equivalents (i.e., the effective number of equally likely elements), they can be 
expressed in a single formula [9,10,12]: 
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where pi is the proportion of OTU i in the sample, S is the total number of OTUs, and the 
exponent q determines sensitivity towards rare or common species. At q=0 all OTUs are equally 
weighted (richness), at q=1 all OTUs are weighted according to their relative frequency 
(Shannon-entropy), and at q=2 the index is disproportionately sensitive to common species 
(Gini-Simpson coefficient). Formula (iv) is undefined at q=1, but finds its limit as: 
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Expressed as numbers equivalents, regional diversity qDγ (γ- or flume-level diversity) can be 
partitioned into 2 independent orthogonal components α- and β- diversity [9]: 

(vi) γβα DDD qqq =⋅  

with qDα being the local diversity (i.e., the effective number of OTUs) and qDβ being a measure 
for diversity among local communities independent from alpha diversity (i.e., the effective 
number of distinct communities). 

For each flume we calculated qDα as the average local diversity: 
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where pi is the proportion of OTU i in sample j, and qDγ as the regional diversity: 
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where N=4, the number of sampled microhabitats along a bedform. Again, limits for qDα  and 
qDγ  exist at q=1 [9]. qDβ is then computed from formula (vi).  

Compositional dissimilarity, the Bray Curtis (dis)similarity index, is recommended as a good 
descriptor of the true resemblance between samples [13,14,15], but not related to any of the 
above diversity indices [9]. Distances between T-RFLP samples were calculated according to: 
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were xik and xjk are the relative abundances of species k in sample i and j [16]. We used the 
average Bray-Curtis distance between samples from one flume at a given time as an additional 
measure for β-diversity. 

Regional diversity qDγ may also be decomposed into the 2 independent orthogonal components 
richness and evenness [9,10,12,17,18]. Following Hill [12] we calculated evenness as: 

(x) γγ DDE q
q

0
0, /=  

for q=1 and q=2, the equivalent evenness expressions for the Shannon entropy and the Gini-
Simpson coefficient [17,18]. While E2,0 is consistent with the notation of the Simpson evenness 
[19], E1,0 does not agree with Pielou´s classical Shannon evenness definition [20] as 
ln(q=1D)/ln(S), which we included in our analyses because of its traditionally widespread use in 
ecology. 

Molecular fingerprinting has limited ability to detect numerically minor taxa [21], and we 
therefore repeated the analysis using reduced datasets with (i) taxa found in all flumes at γ-level 
at each date (i.e., at least at one microhabitat), and (ii) taxa found at all microhabitats (=samples) 
at each date (which effectively limits the analysis to an investigation of evenness differences 
among widespread and common taxa).  

All diversity calculations were done separately for each of 4 sampling dates. To remove temporal 
variation and to allow a pooled analysis with higher statistical power, data were z-standardized 
within each sampling date according to: 
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where yi is any value of the variable y, y  is the mean and sy the standard deviation of the 
respective variable [15].  

To describe similarity among flumes with regard to community composition at flume level (γ) 
we computed Bray-Curtis dissimilarity matrices between flumes. Flume-level average 
abundances of OTUs were used to compute separate matrices for each flume and each sampling 
date. To allow pooling of data with equal weights, distances of each of the date-specific matrices 
of each flume were rescaled by division through their average distance to the centroid, and 
rescaled distances were then averaged over all date-specific matrices to form one matrix for each 
flume (matrix COMMCOMP in Table S3 and Figure 4). Distances to centroids were calculated 
by principal coordinate analysis as required for objects in a non-Euclidean space [22]. 

Calculation of mass transfer coefficients 

Mass transfer coefficients [23] (uptake velocity vf, units: length time-1) for glucose and bulk 
DOC were calculated from log-linear fits of concentration decline in time (t) according to: 

(xii) tkC C ⋅=− *)ln(  

where C* is the normalized concentration and kC is the uptake rate coefficient (units: time-1), 
which is related to vf by: 

(xiii) 
A
Vkhkv CCf ⋅=⋅=  

with V being the volume of the system, h being the average depth, and A the streambed area. 
Mesocosm volumes were estimated at the end of the experiment by injection and dilution of a 
known amount of conservative tracer (Rhodamin WT). Streambed area was computed from 
bedform geometry. Time is interaction time with the gravel surface (i.e., corrected for travelling 
times in the recirculation system). 

In contrast to uptake rate or uptake length, the mass transfer coefficient is a measure for uptake 
which is independent from scaling effects caused by flow velocity and flume dimensions [23,24]. 
Its product with bulk water concentration gives the flux of a solute to the streambed (units: mass 
length-2 time-1). 

DOC-composition: extraction and mass spectrometry details, computation of resource use 
metrics   

2 l water samples collected in the header tank before (inflow) and from each flume after the 
recirculation period (residual) were filtered through combusted glass fibre filters immediately 
after collection and slowly passed through a preactivated XAD-8 resin column [25] within hours 
of collection. The organic fraction retained on the resin was eluted with 50 ml methanol. 
Methanol was evaporated under vacuum on a Büchi Syncor Polyvap R12 at 30-40 °C and the 
residue resuspended in 100 µl methanol. This extremely gentle extraction procedure without 
alkaline/acid treatments was followed to conserve the expected minute compositional differences 
of DOC along the heterogeneity gradient. Albeit the isolated samples will probably differ from 
the original DOC due to the loss of a hydrophilic fraction, they can still be expected to be 
excellent surrogate materials for evaluating DOC compositional changes and bioavailability of 
various dissolved organic compounds. 
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ESI(-)-ICR-FT mass spectra were externally calibrated on arginine clusters (10 mg l-1 in 
methanol) and each spectrum underwent systematic internal calibration with fatty acids reaching 
a mass accuracy lower than 0.1 ppm. Before Fourier transformation of the time-domain transient, 
a sine apodization was performed. The algorithm used to compute elemental formulae was 
programmed in Fortran in house. It allows a tolerance of 1 ppm between experimental and 
theoretical peaks, looks for confirmation by a 13C isotope peak and checks compliance with the 
nitrogen rule. Further constraints of O/C ratio ≤ 1 and H/C ratio ≤ (2n + 2) were enforced for 
reliable chemical characterisation. The low signal to noise ratio of 1 allowed consideration of 
lowest peak intensities for isotopic confirmation, while sensitivity and contamination artefacts 
were taken care of when data from all samples were conservatively compiled by limitation to 
compounds positively identified in the inflow and all residual samples (361 individual peaks). 
This also excludes compounds that were likely produced in situ (e.g., photosynthate products 
from algae) -  except there is overlap between in situ produced and added compounds. 276 peaks 
had reliably assigned mass formulae within tolerance limits. Diversity of DOC-composition was 
calculated using the Shannon-Wiener entropy: 

(xiv) ( )∑−= iiDOC ppH ln´  

where pi is the relative peak height of compounds common to all samples. H´DOC reduces to an 
evenness measure in this case.  

Uptake rates (u) of individual compounds were calculated from peak intensity ratios of inflow 
and residual for each mesocosm according to: 
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where rIresid-i and aIresid-i, rIinflow-i and aIinflow-i are relative and absolute peak intensities of 
individual compound i in the residual and inflow DOC-pools, respectively, and t is time of 
recirculation. A further small correction by mesocosm volume V and area A allows expression as 
compound-specific mass transfer coefficients: 
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from bulk DOC concentration declines. For further analyses this quantity is of no importance, as 
it effectively only means an additive transformation of all individual compounds´ vf  (vf-indDOC) of 
a given flume, and will thus not affect model parameters based on the variance of vf-indDOC

 within 
each flume. Importantly, statistical independence from bulk DOC mass transfer is 
uncompromised for both the variance of vf-indDOC and variance-derived model parameters. This 
variance (or its root, i.e. the standard deviation of mass transfer coefficients) is also used as a 
measure of resource use diversity across the various DOC compounds. A low variance of vf-

indDOC translates into a high similarity of mass transfer coefficients among compounds and means 
highly even, i.e. diverse, resource use.  

Taking the logarithm of the ratio rIresid-i/rIinflow-i further disposes of the problem of choosing 
between a ratio or its reciprocal, as ln(rIresid-i/rIinflow-i) = -ln(rIinflow-i/rIresid-i), which makes this 
quantity (or the related vf-indDOC-i) suitable for analyses of similarities of resource use distribution 
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(i.e., DOC resource consumption patterns) between flumes. This is done in the calculation of a 
dissimilarity matrix (matrix DOCUSE in Supporting Table S3 and S7 and Figure 4) which is 
further used for Mantel statistics and can be graphically represented following clustering 
techniques (Figure 2a). Before calculating dissimilarity measures from vf-indDOC, a normalization 
(or centering) is a reasonable correction of the additive transformation brought by using bulk 
DOC concentration declines in formula (xv), which also restores statistical independence from 
bulk DOC mass transfer. 

We analysed dependency of compound-specific mass transfer coefficients from the following 
chemical descriptors: the ln-transformed relative peak intensity in the inflow rIinflow, the 
aromaticity index AI [26], indication of aromatic structures (AI>0.5), O:C and H:C ratios, 
presence of nitrogen N and molecule size m/z. Hierarchical partitioning [27] was applied as the 
most objective form of multiple linear regression analyses. Hierarchical partitioning overcomes 
the problems of model selection and of collinearity among predictor variables in multiple linear 
regression analysis by exhaustive regression model building with all possible variable 
combinations and partitioning of the coefficient of determination to assign “independent” (as 
opposed to conjoint) contributions to single predictor variables [27,28]. Significance testing can 
be achieved by a randomization procedure [28,29]. We used the hier.part package [30] in the 
statistical language R version 2.7.1. [3] and the Akaike and Schwarz Bayesian Information 
Criteria [31] to select for the most parsimonious model for each mesocosm. This approach 
identified a subset of predictors repeatedly explaining most of the variance of compound-specific 
mass transfer in individual flumes. Reduced multiple linear regression models were used to 
investigate gradients among flumes by relating unstandardised slopes of the regression models to 
flow heterogeneity (SDRxyz). Interestingly, N as a specific predictor was not identified as a good 
predictor within flumes, but consistently proved to explain trends across flumes (Supporting 
Tables S4 and S5). Parameters from a final regression model including rIinflow and N as 
predictors were used to further analyze resource use diversity. 
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