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SUPPLEMENTARY METHODS 

Representation of the chromatin chain in the six-angle model 

As described in (1), the chromatin fiber is defined by a linear chain of segments, one for each 

nucleosome and two or three segments describing the intervening linker DNA. The position 

of the segment i in the chain is described by a position vector ipr , while its orientation is 

described by a local coordinate system ( if
r

, iur , ivr ) with iii fuv
rrr

×= . The segment vector isr  is 

defined by iii pps rrr
−= +1  with the segment length bi = isr  and iii bus ⋅=

rr . The geometrical 

center imr  of the nucleosome i is given by: 

 

     iiii acspm ˆ
2
1

⋅++= vrr ,      (SM1) 

 

where c is the distance between the center of the segment and the nucleosome center, and iâ  

is the vector describing the direction from the segment center to the nucleosome center (Fig. 

SM1). 

 

FIGURE SM1. Discretization of the chromatin fiber. Three segments are shown: i is 
the segment of the nucleosome, and i-1 and i+1 are segments of the incoming and 
outgoing linker DNA. For simplification, the shape of the nucleosome is shown as 
cylinder instead of a spherocylinder as it is used for the calculation of the 
internucleosomal interaction energy (see below). 
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In the previously used two-angle representation, for iar  and ior  holds: ii va rr
=  and ior = iur  (1). 

Thus, the orientation of the nucleosome was parallel to the segment vector and the center was 

situated symmetrically with respect to the segment vector. In contrast, in the six-angle model 

the nucleosome center and orientation can be shifted and rotated relative to the segment 

vector (2). Therefore, iar  is defined by two rotations of the vector ivr : around iur  by the angle ε 

and around if
r

 by the angle φ  (2) (Figs. 1 A and SM1). Similarly, ior  is described by two 

rotations of the vector iur : around ivr  by the angle δ and around if
r

 by the angle ζ (Figs. 1 A 

and SM1). Note that ζ is not included in former descriptions of the six-angle model, since it 

has not been needed for the description of fiber conformations studied. The nucleosome 

description of the six-angle model (2) is compatible with the description of the two-angle 

model (1) if the angles ε, φ, δ and ζ are set to 0°. For more details see Fig. 1 A and the 

corresponding text. 
 
 

Elastic energies 

The elastic interactions described in (1) are assumed to be harmonic. The strength constants 

of the interactions are named )(
)(

X
Ya  in which X denotes the type of interaction. This can be  

stretching (s), bending (b) or torsion (t). The interaction partners are denoted by Y, which can 

be either DNA or nucleosome. The stretching energy is defined by: 

 

( )20
0

)(

ii
i

s
Y

Stretch bb
b
aU −= ,      (SM2) 

 

with bi is the current length of the segment as described above and 0
ib  is the equilibrium 

length of the segment. The equilibrium length is defined by the chosen DNA linker length 

divided by the number of segments between adjacent nucleosomes. For nucleosomes, 0
ib  is 

defined as the equilibrium distance d between incoming and outgoing DNA (Fig. 1 A).  

For the bending energy, an equilibrium nucleosome geometry is defined by the incoming and 

outgoing linker DNA. The bending angle is computed between the segment vector 1+iur  and its 

equilibrium direction iB
r

 relative to the connected segment. iB
r

 is defined by the angles ωi and 

ξi: 
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iiiiiiiii uvfB ωξωξω cossinsincossin rrrr
++=    (SM3) 

 

and the bending angle θi is calculated from 1)cos( += iii uB rrθ . The bending energy is given by: 

 

2
0

)(

i
i

b
Y

Bend b
aU θ=       (SM4) 

 

The angles ωi and ξi for the intrinsic bending of two segments i and i+1 are defined by the 

parameters α and γ of the six-angle model (Fig. 1 A): 

 

⎪
⎩

⎪
⎨

⎧

∈+∧∈
∈+∧∈
∈+∧∈−

=
DNAiDNAiif
NUCiDNAiif
DNAiNUCiif

i

1,0
1,2/
1,2/)(

π
απ

ξ    (SM5) 

 

⎪
⎩

⎪
⎨

⎧

∈+∧∈
∈+∧∈+−
∈+∧∈+−

=
DNAiDNAiif
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γπ
γπ

ω   (SM6) 

 

In the two-angle model (1), the equilibrium entry-exit angle of the DNA at the nucleosome 

was defined by α measured parallel to the flat side of the nucleosome cylinder. In the six-

angle model, the additional angle γ describes the entry-exit-angle measured perpendicular to 

the flat side of the nucleosome cylinder (Fig. 1 A). If γ = 0°, the equilibrium position of the 

six-angle model (Eqs. SM5 and SM6) corresponds to the two-angle model.  

For the torsion energy, an intrinsic torsion is considered. The coordinate systems of two 

connected segments i and i+1 can be mapped on each other by an Euler-transformation with 

the angles (αi, βi, γi) in which the rotation of the first angle is around iur . Then αi + γi - τi is the 

total torsion with τi is the intrinsic torsion. The torsion potential is then: 

 

( )2
0

)(

iii
i

t
Y

Torsion b
aU τγα −+=      (SM7) 
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The intrinsic torsion τi of two segments i and i+1 is defined by the parameters α and β of the 

two- and six-angle model (Fig. 1 A): 

 

⎪
⎩

⎪
⎨

⎧

∈+∧∈
∈+∧∈−
∈+∧∈−−

=
DNAiDNAiif
NUCiDNAiif
DNAiNUCiif

i

1,0
1,2/
1,2/

α
απβ

τ    (SM8) 

   
 

Electrostatic Energy 

The electrostatic interaction between DNA segments is determined by integrating the solution 

of the Debye-Hückel equation for a point charge over two charged line segments (1):  

 

( )
∫ ∫

−
=

ij

ij
ji

e
ij r

r
dd

D
E

κ
λλν exp2

)(       (SM9) 

 

D is the dielectric constant of water, and κ the inverse of the Debye length. rij is the distance 

between the current positions at the segments i and j to which the integration parameters  

λi, λj correspond. The charge per unit length ν is chosen such that the potential at the radius of 

the DNA coincides with the solution of the Poisson-Boltzmann equation for a cylinder with 

charge per length *
0ν . For DNA in the presence of the Gouy layer of immobile counterions, 

this can be computed as 0
*
0 νν q=  in which ν0 = –2e/Δ is the charge per length of the naked 

DNA (3), e is the proton charge, and Δ = 0.34 nm is the distance between base pairs. 

Following Stigter, the value of q is 0.73 (4). To save computation time, a tabulation of the 

double integral is used. The table is parameterized by the distance of the segments and three 

values describing its relative orientation. During the simulation a linear interpolation of the 

tabulated values was used. 
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Internucleosomal potential 

The anisotropic internucleosomal interaction is described by a series expansion in S-functions 

(5). This potential is based on the 12-6 Lennard-Jones potential: 
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with 1ô  and 2ô  as unit vectors defining the orientation of the particles (see above), rr  as the 

vector of the distance of the particles ( 12 mmr rrv −= ) and σ0  scales the potential width. The 

potential strength (ε) and range (σ) parameters depend on the orientation and center-to-center 

difference vectors of two nucleosomes and define the anisotropy of the potential. For the 

Zewdie potential, the two factors were described by S-functions for identical cylindrically 

symmetric particles (6, 7). The potential range is defined as: 

 

])([)ˆ,ˆ,ˆ( 224224222222220220022202200000001 SSSSSSroo cc σσσσσσσ +++++= ,  (SM11) 

 

and the potential strength is given by: 

 

])([)ˆ,ˆ,ˆ( 2242242222222202200222022000000021 SSSSSSroo cc εεεεεεε +++++= ,  (SM12) 

 

where ε0 is the maximum potential strength. The S-functions (S000, S202, S022, S220, S222 and 

S224) depend on the orientation of the nucleosomes and the difference vector between the 

nucleosome centers. They are listed in Table SM1. The expansion coefficients for the strength 

(ε000, εcc2, ε220, ε222, ε224) and range (σ000, σcc2, σ220, σ222, σ224) are responsible for the 

dimension of the nucleosome shape and for the ratio of the energy strength between different 

oriented nucleosomes (e.g., top-on-top and side-by-side), respectively. While the range 

coefficients were chosen in order to fit the dimensions of the nucleosome (width = 11 nm and 

height = 5.5 nm), the strength expansion coefficients were chosen to achieve a ratio of 1/12 

between side-by-side and top-on-top oriented nucleosomes (5). The actual values for these 

coefficients as well as for the range parameter were determined by performing least square 

fits (5) and are shown in Table SM2.  
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TABLE SM1. The first six S-functions for identical cylindrically symmetric particles. 
1ô  and 2ô  are the unit vectors defining the orientation of the particles (Fig. SM1) and 

r̂  is the unit vector of the center-to-center distance of the particles. 
 

210 ˆˆ oof ⋅= , rof ˆ1̂1 ⋅= , rof ˆˆ22 ⋅= . 

1000 =S ,   52/)13( 2
1202 −= fS ,   52/)13( 2

2022 −= fS ,   52/)13( 2
0220 −= fS , 

70/)93332( 021
2

0
2

2
2

1222 ffffffS +−−−= , 

704/)35205521( 2
2

2
1210

2
2

2
1

2
0224 ffffffffS +−−−+=  

 
 
TABLE SM2. Parameters of the nucleosome-nucleosome potential for the ratio 
Elateral/Elongitudinal = 1/12 between the maximum interaction energy of lateral and 
longitudinal oriented nucleosomes.  

 
Parameter         Value 

S000 1.6957 
Scc2 -0.7641 
S220 -0.1480 
S222 -0.2582 
S224 0.5112 
E000 2.7206 
Ecc2 6.0995 
E220 3.3826 
E222 7.1036 
E224 3.2870 
σ0 5.5 nm 

 
 
In order to demonstrate the anisotropy of this potential, Fig. SM2 shows the energy of two 

nucleosomes in dependence of their distance and orientation for ε0 = 0.5 kBT (kB is the 

Boltzmann constant and T is the temperature). It is apparent that for the top-on-top 

arrangement the highest attraction energy Emax appears, which corresponds to 12·ε0 (14.6 

kJ/mol), while the side-by-side arranged nucleosomes lead to a maximum attraction energy of 

ε0 (1.2 kJ/mol).  
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FIGURE SM2. Zewdie-Potential as function of the center-to-center distances r for 
different oriented nucleosome pairs. The parameters of the potential are shown in 
Table SM2. The maximum potential depth of top-on-top and side-by-side arranged 
nucleosomes deviates by the factor 12. For all curves, the energy is zero at the 
distance where nucleosomes touch each other: rtop-on-top = 5.5 nm, rrotated = 8.25 nm and 
rside-by-side = 11 nm.  

 

 

DNA-Nucleosome excluded volume  

In order to inhibit sterical overlaps between nucleosomes and linker DNA, a repulsive 

potential is defined. Therefore, the DNA is approximated by a number of overlapping spheres 

with the radius rd = 1.2 nm corresponding to the DNA cylinder radius. Similar to the Zewdie 

potential, the nucleosome is represented as a spherocylinder with the particular condition that 

the radius and height are defined by rn = 5.5 nm, which correspond to the nucleosome 

dimension (width = 11 nm and height = 5.5 nm) (Fig. SM3 A). The repulsion energy between 

a DNA linker and a nucleosome with the segment indices D and N, respectively, is defined by 

the summation of the interaction energy of each DNA-sphere with the nucleosome: 

 

( )iDNN

S

i
NucDNANucDNA eomEE ,

1
,, rrr∑

=
−− ′= ,    (SM 13) 
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where S is the number of spheres per DNA segment, Nmr  and Nor  are the center and 

orientation vectors of the nucleosome N (Fig. SM1), respectively, and iDe ,
r  is the center of the 

ith sphere of the DNA segment D: 

 

D
dD

dDDiD s
S

rb
irspe rrrr

1
2

)1(, −
−

−+⋅+= .    (SM 14) 

 

As described above, Dsr  is the segment D, Dpr  is the starting point of the segment, and Db  is 

the length of the segment (Fig. SM1). The energy NucDNAE −′  of one DNA-sphere and a 

nucleosome is defined by: 

 

( )
( )( )⎩

⎨
⎧

−−⋅
+≥

=′ − elserreomdk
rreomdeomE

dn

dn
NucDNA ,,,

,,if,0),,( 12rrr

rrr
rrr  , (SM 15) 

 

with k is the energy scaling constant. The parameter ( )eomd rrr ,,  defines the minimum distance 

between the center of the DNA sphere er  and the nucleosome center axis, which is defined by 

the center mr  and the orientation or  of the nucleosome (Fig. SM1). The distance ( )eomd rrr ,,  is 

computed from the projection of the DNA-sphere center on the plane of the nucleosome 

center axis. Accordingly, the vector nr  defines the projection point of the DNA-sphere center 

on the plane of the nucleosome center axis (Fig. SM3 B): 

 

( )( ) omeoen ˆˆ ⋅−⋅−=
rrrr ,     (SM 16) 

 

and the vector mnq rrr
−=  is the distance between this point and the nucleosome center. Thus, 

the distance ( )eomd rrr ,,  is calculated by: 

 

( )
⎪
⎩

⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
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rrr
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FIGURE SM3. Schematic representation of the DNA-nucleosome excluded volume. 
(A) The nucleosome is represented as spherocylinder with the radius and height rn, 
while the DNA cylinder is approximated by a number of spheres, in this case three, 
with the radius rd. The distances d1, d2 and d3 indicate the minimum distances between 
the nucleosome center axis and the DNA spheres. An overlap occurs if d < rd + rn. In 
this example, the third sphere exhibits an overlap since d3 < rd + rn. (B) The distance d 
between a DNA-sphere and the nucleosome is computed by the projection point nr  of 
the DNA-sphere center er  on the plane of the nucleosome center axis (Eq. SM16). If 
the length of the vector qr  is smaller than rn /2, then d is the distance between er  and 
nr , otherwise d is defined by the distance between er  and mr + q̂ · rn /2 (Eq. SM 17). 
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SUPPLEMENTARY TABLES 

TABLE S1. Parameters used in the MC simulations. The elastic 
parameters were chosen as described by Wedemann and Langowski 
(1). For the DNA, the values are based on the average of 
experimentally determined values of 45 - 50 nm DNA bending 
persistence length and a DNA torsion elasticity of 2.8 ± 0.2 · 10-19 J 
nm (8). The elasticity of the nucleosome/chromatosome has not been 
derived from experimental studies. Therefore, values were chosen 
that essentially maintain the initial conformation of the 
chromatosome. 

 
Parameter         Value 

Stretching module DNA 1.10 · 10-18 J nm 
Bending module DNA 2.06 · 10-19 J nm 
Torsion module DNA 2.67 · 10-19 J nm 
Electrostatic radius DNA 1.2 nm 
Stretching module nucleosome 1.10 · 10-18 J nm 
Torsion module nucleosome 1.30 · 10-18 J nm 
Temperature 293 K 
Ionic strength 100 mM NaCl 
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Table S2. Six-angle model geometries and properties for different chromatin fiber models. The CL and ID structures were 
developed in (2) and the CLS geometry in (5). The diameter and linear mass density were computed from the statistical ensemble in 
thermal equilibrium. The ID geometry with NRL > 187 bp did not lead to an obvious nucleosome stacking pattern, and structures 
with NRL = 207 bp did not form fiber-like structures in thermal equilibrium (2). 

 
Geometry NRL 

(bp) 
ψ 
(°) 

α 
(°) 

γ 
(°) 

β 
(°) 

ε 
(°) 

φ 
(°) 

δ 
(°) 

c 
(nm) 

d 
(nm) 

Fiber Type 
[Nstack, Nstep] 

diameter 
(nm) 

linear mass density 
(nucleosomes/11 nm fiber) 

              

CL 169 70 50 -50 220 0 0 20 3.3 8 [2, 1] 26.2 ± 0.2 3.1 ± 0.1 
CLS 212 26 26 0 260 0 0 0 8 3.1 [3, 1] 36 ± 0.7 4.6 ± 0.1 
ID 187 128 117.5 -65 0 0 0 60 5.6 3.7 [6, 1] 30.1 ± 0.1 7.6 ± 0.2 
ID 197 121 117.5 -39 0 0 0 58 5.6 3.7 — 37.5 ± 0.4 6.9 ± 0.5 
ID 207 120 117.5 -28 0 0 0 52 5.6 3.7 — — — 
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TABLE S3. Energies of simulated chromatin structures at different simulation steps. The remaining parameters of the six-
angle model correspond to the descriptions of Table S2. For each system, the energy for three stages of the simulations is 
shown: i) before simulation corresponding to the values of the static phase diagrams (static PD), ii) after 107 Monte Carlo 
(MC) steps corresponding to the dynamic phase diagrams (dynamic PD), and iii) the mean value for the simulated structure 
in thermal equilibrium. The differences between the energies of simulated structures after 107 MC steps (dynamic PD) and 
the mean values in thermal equilibrium are marginal.  

 
Geometry NRL 

 
(bp) 

ψ 
 

(°) 

α 
 

(°) 

γ 
 

(°) 

β 
 

(°) 

energy 
static PD 

(kBT) 

energy 
dynamic PD 

(kBT) 

mean energy 
thermal equilibrium 

(kBT) 
         

former models (see refs.(2, 5), Fig. S1 and Table S2) 
CL 169 70 50 -50 220 197078 383 426 ± 28 

CLS 212 26 26 0 260 106601 369 361 ± 28 
ID 187 128 117.5 -65 0 35450 99 98 ± 28 
ID 197 121 117.5 -39 0 239 168 138 ± 31 
ID 207 120 117.5 -28 0 1114 312 320 ± 32 

         
new models (see Fig. 5 and Table 1) 

CL 169 25 17.7 -17.7 175 201991 208 290 ± 35 
ID 187 117.5 117.5 0 295 96882 21 55 ± 28 
ID 187 125 117.5 -54.23 355 94898 46 88 ± 28 
ID 197 130 117.5 -70.89 355 -75 14 89 ± 27 
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SUPPLEMENTARY FIGURES 

 
FIGURE S1. Chromatin fiber models for different nucleosome geometries. The 
configurations were generated by MC simulations. The simulated fibers are designated 
according to the denotation of Depken and Schiessel (9) (Fig. 1 B). (A) Crossed-linker (CL) 
geometry derived from the tetranucleosome crystal-structure (2) lead to a [2, 1] fiber. (B) 
Crossed-linker model with nucleosome stem (CLS) for native chromatin of chicken 
erythrocytes (5) lead to a partially broken [3, 1] fiber. (C, D, E) Interdigitated geometry (ID) 
including linker histones with NRL of 187, 197 and 207 bp, respectively. These models were 
developed to reproduce the experimental data of reconstituted chromatin fibers with high 
mass densities (2). For an NRL of 187 bp, a [6, 1] fiber is obtained (C), while for higher 
NRLs (D and E) no uniform nucleosome stacking occurred. 
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FIGURE S2. Static phase diagrams of single energies of the CLS geometry with NRL = 212 
bp for the opening angle ψ (γ = 0) and the nucleosome twist angle β with a step width of 1°. 
The corresponding phase diagram of the total energy is shown in Fig. 2 B. (A) Electrostatic 
energy of the linker DNA segments. The highest energies occur at the border between 
sterically possible and impossible conformations. However, there are also borders with very 
low electrostatic energy. (B) Energy of the nucleosome-nucleosome interaction. The lowest 
energy appears near the border between sterically possible and impossible conformations. 
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FIGURE S3. Energy phase diagrams for the ID geometry. A value of α = 117.5° was used, 
while γ was varied in order to reach the indicated value of the opening angle ψ. Step widths of 
0.5° and 1° were used for ψ and β, respectively. Fibers with the lowest energy were found at 
the border between sterically possible and impossible conformations. Previous models for 
reconstituted chromatin fibers in the elastically relaxed state are located in sterically 
forbidden areas (A: fiber 2, B: fiber 1). (A) NRL = 187 bp. Broad energy valleys are apparent 
for two fiber types: [6, 1] fibers with nucleosomes perpendicular to the fiber axis (fibers 1 and 
3), and fibers with nucleosomes parallel to the fiber axis with no apparent nucleosome 
stacking (fiber 4). (B) NRL = 207 bp. No obvious energy valleys exist but fibers with a high 
number of nucleosome stacks and large diameter had the lowest energies (fibers 2-6 and 8). 
These interdigitated fibers can be described by [n, 1] where n is the number of nucleosome 
stacks in the range of 5 (fiber 8), 12 (fiber 6) and above for higher ψ values (fibers not 
shown).  
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FIGURE S4. Dynamic energy phase diagrams of the ID geometry for the opening angle ψ and 
the nucleosome twist angle β. Simulations for 107 MC steps were conducted and the last 
configurations of the simulated trajectories were used for analysis. The red contour lines 
indicate the former borderline between the sterically possible and impossible conformations 
of the static phase diagrams (Fig. S3). For both NRLs, the chromatin structures became more 
irregular and the region of the sterically forbidden area reduced significantly. (A) NRL = 187 
bp. Two different structures are energetically most favorable: ID fibers with nucleosomes 
parallel to the fiber axis, e.g., fiber 2 with no apparent nucleosome stacking, and fibers with 
nucleosomes perpendicular to the fiber axis, e.g., [5, 1] (fiber 3) and [6, 1] (fibers 1 and 4) 
fiber conformations. (B) NRL = 207 bp. Most of the chromatin fibers did not retain their 
initial conformation during the simulations (fibers 1-4). Only fibers with a high number of 
nucleosome stacks (> 11) and high diameters (> 47 nm) converged to stable fiber-like 
structures, e.g., fiber 5: [12, 1], fiber 6: [13, 1], and fiber 7: [17, 1]. 
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