Supplemental Methods

Modification in SA and ABA analysis

1. For humidity shift experiments

Plant materials were lyophilized and ground to a fine powder in 80% (v/v) methanol containing 1% (v/v) acetic acid (10 ml per g FW of tissue). $[^{2}H_{6}]ABA$ (ICON isotopes) and [²H₆]SA (Sigma) were added as internal standards to a concentration of 10 ng g-1 FW (ABA) and 100 ng g-1 FW (SA). The mixture was incubated for 1 h at 4°C with constant rotation and subsequently centrifuged at 3000g for 20 min at 4°C. MeOH in supernatant were removed and water layer were loaded onto a Oasis HLB cartridge (30 mg, 1 cc; Waters). Before sample loading, the cartridges were washed with 1 ml each of methanol and water and equilibrated with 1 ml of water containing 1% AcOH. 10% of this eluent were dried, dissolved into 20 µl of water containing 1% AcOH, and 10 µl were subjected to the determination of SA by liquid chromatography-tandem mass spectrometry (LC-MS/MS). ABA were eluted with 2 ml of 80% MeOH containing 1% AcOH after washing with 1 ml of water containing 1% AcOH. MeOH in this eluent were removed and water layer were loaded onto an Oasis WAX cartridge (30 mg, 1 cc; Waters), ABA were eluted with 2 ml of 80% MeOH containing 1% AcOH after sequential washing with 1 ml of water containing 1% AcOH and 1 ml of MeOH. Before sample loading, cartridges were washed with 1 ml each of MeCN and MeOH, then regenerated with 500 µl of 0.1 M NaOH, and equilibrated with 1 ml of water containing 1% AcOH. The eluent were dried, dissolved into 20 µl of water containing 1% AcOH, and 10 µl were subjected to the determination of ABA by LC-MS/MS.

The LC-MS/MS system consisted of Agilent 1200 (Agilent) and Agilent 6410 (Agilent). LC separations were performed on an zorbax eclipse C18 (2.1 x 50 mm, 1.8 μ m particle size; Agilent) at a flow rate of 200 μ l min-1. For the analysis of SA, the mobile phase consisted of water containing 0.1% formic acid (solvent A) and MeCN containing 0.1% formic acid (solvent B), and was programmed as follows: a 10 min linear gradient from 3 to 98% solvent B, kept to 15 min at 98%

solvent B, and a 16 min linear gradient from 98 to 3% solvent B, and kept to 20 min at 3% solvent B. The MS/MS conditions were as follows: capillary voltage, 4000 V; gas temperature, 300°C; gas flow, 9 I min-1; nebulizer, 30 psi; fragmentor, 100; collision energy, 16.0 V. SA and [²H₆]SA showed almost identical retention times, which were 6.2 min. The MS/MS transitions used for SA determination were m/z 137/93 (as SA) and m/z 141/97 (as $[^{2}H_{6}]SA$, in water $[^{2}H_{6}]SA$ converts almost quantitatively to $[^{2}H_{4}]SA$). For the analysis of ABA, the mobile phase consisted of water containing 0.01% AcOH (solvent A) and MeCN containing 0,05% (V/V) acetic acid (solvent B), and was programmed as follows: a 15 min linear gradient from 3 to 50% solvent B, 17 min linear gradient from 50% to 98% solvent B, and kept to 20 min, 21 min linear gradient from 98 to 3% solvent B, and kept to 26 min at 3% solvent B. The water and MeCN used were of LC-MS grade (Kanto Chemical). The MS/MS conditions were as follows: capillary voltage, 4000 V; gas temperature, 300°C; gas flow, 9 I min-1; nebulizer, 30 psi; fragmentor, 140; collision energy, 8.0 V. ABA and [²H₆]ABA showed almost identical retention times, which were 10.8 min. The MS/MS transitions used for ABA determination were m/z 263/153 (as ABA) and m/z 269/159 (as $[^{2}H_{6}]ABA).$

2. Drought stress experiments

Each sample was homogenized with liquid nitrogen, and extracted with 80% MeOH (3mL x 3) before adding of 100ng of deuterated-ABA (d₄-ABA) as internal standard. After centrifugation at 12,000xg for 10min, the extract was evaporated and partitioned between ethyl acetate and water (pH2.5). The obtained ethyl acetate soluble fraction was purified by a reversed phase HPLC (Intersil ODS C_{18} , 4.6 x 150 mm) eluted with 25% acetonitrile containing 1% acetic acid at a flow rate of 0.5 mL min⁻¹. Fractions were collected every minute. The fractions eluted at 19 min (ABA) was dried, methylated by adding MeOH and ethereal diazomethane at room temperature for 30 min, and analyzed by a capillary GC-MS using a Hewlett-Packard 5973 mass spectrometer (EI, 70 ev) coupled to a 6890 gas chromatograph fitted with a fused silica capillary column (HP-5, 0.25)

mm x 30 m, 0.25µm film thickness). The oven temperature was maintained at 100° C for 2 min, elevated to 260° at a rate of 5°min⁻¹ and then maintained at 280°. Helium was used as the carrier gas at a flow rate of 1 mL min-1. Samples were introduced using an on-column injection mode and analyzed by GC-selected ion monitoring (SIM) method. The level of ABA was calculated by ratio of *m*/*z* at 190 and 194 for the molecular ion of endogenous ABA and d₄-ABA, respectively.

3. SA for nahG experiment

Salicylic acid and its glucoside were quantified using gas chromatography-mass spectrometry. 100 mg of frozen leaf tissue were extracted twice with 800 µl acetone:50 mM citric acid (7:3, v/v) in 2 ml Fast Prep tubes containing ceramic beads using a FastPrep FP 120 tissue homogenizer (Qbiogene, Carlsbad, CA). The samples were spiked with $[^{2}H_{B}]SA$ as an internal standard (CDN Isotopes, Point-Claire, QC, Canada). After evaporation of the acetone under vacuum the aqueous solutions were extracted twice with 750 µl of diethyl ether. SA-glucoside was extracted from the remaining aqueous solution after acidification with 5 µl of HCI and hydrolysis at 90°C for 1 hour by diethyl-ether extraction. All samples were then loaded on 1ml Supelclean LC-NH₂ SPE columns (Supelco, Bellefonte, PA). After washing with 1.2 ml chloroform:2-propanol (2:1, v/v) compounds were eluted with 1.5 ml diethyl-ether:formic acid (98:2, v/v). The eluates were then evaporated to dryness under a stream of N₂, dissolved in 100 µl dichlormethane:methanol (8:2, v/v) and derivatized with 2 µl Trimethylsilyl-Diazomethane (Aldrich, Oakville, ON, Canada) for 20 minutes. The reaction was stopped by adding 2 µl 2M acetic acid in hexane (Schmelz et al., 2004). The resulting methyl esters of SA were analyzed by gas chromatography-mass spectrometry (6890N GC connected to a 5975 mass selective detector, Agilent Technologies, Palo Alto, CA) in isobutene chemical ionization mode following the specifications of Schmelz et al. (2004). The methyl esters were measured using selected-ion monitoring with m/z 153 (SA) and m/z 157 ([²H₆]SA).

Supplemental Figure 1. Humidity and temperature affect spontaneous cell death formation in *cpr22*. (A) Electrolyte leakage of leaf discs from Ws-wt and *cpr22* plants grown under 65% RH (22°C) conditions, grown under 95% RH (22°C) conditions, grown under 95% RH (22°C) conditions and shifted to 65% RH (22°C) conditions for 2 days, or grown under 16°C (RH65%) conditions, or grown under 22°C (RH65%) conditions and shifted to 16°C (RH65%) conditions for 2 days. Conductivity data is the average \pm SE (n=4). Student's T-test shows significant difference between *cpr22* and Ws-wt plants. (B) Photographs show morphology, chlorotic phenotypes and spontaneous cell death by Trypan Blue staining of four-week-old *cpr22* and Ws-wt plants grown under 16°C (65% RH) conditions, or grown at 22°C (65% RH) conditions and shifted to 16°C (65% RH) conditions for 2 days.

Α

А

Supplemental Figure 2. High RH attenuates HR formation after infection with *Pseudomonas syringae* DC3000 (*AvrRpt2*). (A) Columbiawt plants were either kept at 65% RH or shifted for one week to 95% RH prior to infection. They were then infected with *P. syringae* DC3000 at OD600 = 0.04. 10 hpi HR formation was assessed by Trypan Blue staining. (B) Electrolyte leakage of leaf discs from plants grown at 65% RH (open bars) and 95% RH (gray bars) 10 hpi (Average of 25 leaves). Student's T-test shows significant difference between AvrRpt2 65% and RH95%. (C) Bacterial growth count. Experiments were done two times with similar results.

Supplemental Figure 3. SA increase after humidity shift in *cpr22* and *ssi4*. SA levels in Ws-wt (open bars) *cpr22* (gray bars), Nö-wt (black bar) and *ssi4* (hatched bar) at 0 and 24 hours after the shift from 95% RH to 65% RH conditions were measured. Student's T-test shows significant difference between *cpr22* and Ws-wt, and between *ssi4* and Nö-wt plants.

Suppl. Figure 4

Supplemental Figure 4. Water loss phenotypes in various mutants and treatments. Plants were weighed at various times after detachment from their roots. (A) *ssi4* (open square), Nö-wt (filled circle), Col-wt (filled diamond) and *cpn1*(filled square); (B) Ws-wt plants after soil drenching with control solution (filled triangle) or with 10µM ABA (open triangle), *cpr22* heterozygous plants after soil drenching with control solution (filled square), or with 10µM ABA (open square), (C) *aba2-2* 16h after soil drenching with control solution (closed diamond), or with 1mM SA (open square). Col-wt 16h after soil drenching with control solution (filled triangle) or with 1mM SA (open triangle). All experiments were repeated at least three times with similar results. Control solution: 0.1% MeOH in water that was used to dissolve ABA or SA.

Supplemental Figure 5.

Effect of higher concentrations of ABA on germination of Ws-wt (open bars) and *cpr22* (gray bars) seeds. Experiment was conducted with approximately 100 seeds in one plate. The experiment has been repeated more than three times with similar results.

Suppl. Figure 6

Supplemental Figure 6. nahG transgene suppresses SA levels and cell death formation after humidity shift in cpr22. Nö-wt, Ws-wt, Nö-nahG, cpr22 (heterozygous), F2 progeny of cross pollination of nahG transgenic (Nö background) and cpr22 (Ws background) plants were used (c/-/--; plants that are heterozygous for cpr22, but do not carry nahG, c/-/N/±; plants that are heterozygous for cpr22 and carry nahG). All plants were grown under 95% RH conditions and then shifted to 65% RH conditions. (A) SA levels. Student's T-test shows significant difference between c/-/-/- and c/-/N/±. (B) Trypan Blue staining for cell death detection 2 days after shift, (C) Electrolyte leakage of leaf discs 2 days after shift. Experiments were done three times with similar results.

Supplemental Figure 7

cpr22 plants did not show significant changes in SA accumulation under moderate drought stress. Ws-wt (open bars), *cpr22* heterozygous plants (gray bars). The data represent the mean levels of three extracts. Each extract was made from 3-5 plants. The experiment has been repeated three times with similar results. Supplemental Table1: Fold differences in *cpr22/ssi4* (compared to wt) of ABA- and Defense/SA-related genes at high humidity (95%) and 24 hours after shift to ambient humidity (65%). (Microarrays were preprocessed together using GC-robust multiarray analysis (gcrma) (Wu et al., 2004). Expression data were filtered to remove probe sets with low expression and low variance across all arrays (genefilter, Gentleman et al., 2009; minimum intensity of 100, on a minimum of 25% of arrays, and minimum interquartile range of 0.5 on the log2 scale).

	probe ID	Gene ID	cpr22				ssi4			
Gene Annotation			before shift		24 h after shift		before shift		24 h after shift	
			Exp.1	Exp.2	Exp.1	Exp.2	Exp.1	Exp.2	Exp.1	Exp.2
ABA-related genes										
NCED3	257280_at	At3g14440	0.6	0.3	10.5	7.4	1.3	1.2	8.5	3.1
AAO3	263570_at	At2g27150	2.2	2.9	3.1	4.0	1.8	1.1	4.9	2.3
ERA1	249405 [_] at	At5g40280	1.7	1.5	3.0	2.5	1.1	1.0	2.7	2.1
ABI1	253994 at	At4g26080	1.2	1.0	3.9	3.0	2.2	0.8	5.0	1.9
HAB1	259922 ⁻ at	At1g72770	0.8	0.9	3.1	2.8	1.1	1.0	2.8	1.8
PP2c	247723 ⁻ at	At5g59220	1.9	0.6	52.3	37.2	1.3	0.9	41.4	5.6
ANAC072 RD26	253872 [_] at	At4g27410	0.6	0.8	5.7	4.2	3.4	1.4	8.0	3.2
RD20	255795 ⁻ at	At2g33380	0.9	0.6	4.5	6.1	1.9	0.6	2.9	1.5
CYP707A4	257035 ⁻ at	At3g19270	3.2	1.1	9.9	9.3	0.9	1.5	2.7	2.2
Snrk3.22	255872_at	At2g30360	0.9	2.2	2.5	3.0	1.5	1.5	4.0	1.7
PYR1	254705 at	At4q17870	0.7	0.4	0.3	0.2	1.0	1.0	0.5	0.6
PYL2	248865 at	At5a46790	0.9	0.7	0.6	0.4	0.8	0.9	0.4	0.6
PYL4	267034_at	At2g38310	1.1	1.2	0.6	0.4	1.1	1.1	0.5	0.7
AtMYC2 RD22BP1	261713 at	At1g32640	0.9	0.6	1.2	1.1	1.9	0.8	1.6	0.9
ABF3_DPBF5	253263 ⁻ at	At4g34000	0.7	0.8	1.1	2.3	1.3	0.8	1.6	1.5
ABF4	258026_at	C C	1.0	1.1	2.2	1.3	1.9	0.8	1.4	1.4
RD22	246908 at	At5g25610	0.6	0.7	0.05	0.1	1.2	1.0	0.5	0.5
RD29A	248337 ⁻ at	At5g52310	0.4	0.5	0.2	0.6	1.6	0.6	1.9	1.0
ERD3	254563 ⁻ at	At4g19120	1.5	2.9	0.5	0.8	0.8	0.8	0.4	0.5
KIN1/KIN2	246481_s_at	At5g15960/ At5g15970	0.8	0.8	0.5	0.5	1.3	1.0	2.0	0.9
Defense/SA-related genes		0								
WRKY70	251705 at	At3q56400	1.0	1.7	8.8	5.1	1.8	1.1	9.2	3.2
EDS1	252373 at	At3q48090	5.9	10.3	7.9	13.9	1.5	1.1	7.2	3.1
PAD4	252060 at	At3q52430	15.4	24.4	76.5	62.6	0.7	1.5	74.4	5.3
PR-1	266385 at	At2g14610	18.1	19.5	78.2	45.1	2.3	1.0	19.6	4.1
disease resistance gene	249264_s_at	At5g41740/	3.8	3.0	9.3	9.9	1.1	0.9	8.8	3.5
disease resistance gene	249393 at	At5a40170	16	20	72	59	1 1	0.8	22	16
disease resistance gene	254851 at	At4a12010	19	3.6	4 2	6.8	1 4	1 1	27	1.9
ICS1 FDS16 SID2	262177 at	At1a74710	14 0	30.0	16 7	33.3	1.4	1.6	22.5	4.9
SID1EDS5	252921_at	At4G39030	75.8	96.2	152.8	280.4	1.7	2.0	74.5	7.0

Supplemental Table 2 Primer sequences

Experiment	Gene	Primer name	Sequence
Real Time PCR	RD29A	rd29A-F	5'-TGGATCTGAAGAACGAATCTGATATC-3'
		rd29A-R	5'-GGTCTTCCCTTCGCCAGAA-3'
	KIN1/2	KIN1-F	5'-ACCAACAAGAATGCCTTCCA-3'
		KIN1-R	5'- CCGCATCCGATACACTCTTT-3'
	NCED3	NCED3-F	5'- CCGGTGGTTTACGACAAGAA-3'
		NCED3-R	5'- CCCAAGCGTTCCAGAGATG-3'
	PP2C	PP2C-F	5'- TGGAGATCCGGAGGTTTAAG-3'
		PP2C-R	5'- TCTCCTCCGCCTCTGTAAGT-3'
	AAO3	AAO3-F	5'-GAAGGTCTTGGAAACACGAAGAA-3'
		AAO3-R	5'-GAAATACACATCCCTGGTGTACAAAAC-3
	18SrRNA	18s rRNA-F	5'- AAACGGCTACCACATCCAAG-3'
		18s rRNA-R	5'- CCTCCAATGGATCCTCGTTA-3'
RT-PCR	RD29A	RD29A-F	5'-ATTCCGGTGGGAGATCAAACTC-3'
		RD29A-R	5'-AACAGAATGTGGCGATTCTGGC-3'
	RD29B	RD29B-F	5'-TGGGAAGAGACTTACCGACGGGAACTCATG-3'
		RD29B-R	5'-CGGAGAGAGGTAGCTTTGTCATCACCGTTG-3'
	RAB18	RAB18-F	5'-TTCACCGCTCCGGATCTGGAT-3'
		RAB18-R	5'-GCTCATTACACACTCATGTAAGTA-3'
	ACT2	ACT2-F	5'-CTAAGCTCTCAAGATCAAAGGCTTA-3'
		ACT2-R	5'-TTAACATTGCAAAGAGTTTCAAGG-3'
Detection of the			
AtCNGC11/12 chimera gene		D2-F1	5'-GTTGCAACTGTGCATGATGG-3'
		GSP14-R3	5'-TCATGAGATCCGGTTGTACTTTTCA-3'
Heterozvaosity of t	the		
AtCNGC11/12 chimera gene		D2DT-F1	5'-CTCTTGATCCCACTTCC-3'
		D2DT-R1	5'-GACCGTGAGATTGCAGT-3'
Detection of the NahG transgene		NahG-F2	5'-AAAGCCACCACGTTGAT
		NahG-R2	5'-ATCCAGGTACAGCTGTT
