Supporting Information

Mao et al. 10.1073/pnas.1000440107

Fig. S1. Placental weights based on sex, uterine horn position (left vs. right), and maternal diet (C, LF, and VHF). As interactions exists, only comparisons within diet groups were made. Bar graphs within a diet group that have varying letters (a–f) differ at P < 0.05. The total number of fetuses within each group is displayed at the top. These were from 12 C dams, 14 LF dams, and 7 VHF dams.

Fig. S2. A plot of the microarray versus RT-PCR values for the female-to-male gene expression ratio for 16 different genes to determine how closely these two procedures mirror each other. The quantitative RT-PCR and microarray data correlated quite well for the majority of the 160 samples, with an overall correlation coefficient of 0.87. The 16 genes analyzed included *Ceacam18, Esr1, Ets1, Fgf2, Hoxa11, Htr2b, Klk1, Olfr1381, Olfr154, Olfr433, Olfr520, Ren1, Ren2, Pcdhb18, Aqp9,* and *Ccr3. (Inset)* A more detailed view of the boxed region in the lower graph.

Fig. S3. Differentially expressed genes (>2-fold; P < 0.05 in two-sample *t* tests) in placentae of LF or VHF male versus C male placentae in the KEGG C21-steroid metabolism pathway. Genes were normalized to the mean intensity of four C male placentae samples. The three bars in each colored box represent the mean normalized expression for, from left to right, C males, LF males, and VHF males. None of the genes in this pathway were differentially expressed in diet comparisons in the female samples.

Fig. S4. Differentially expressed genes (>2-fold, P < 0.05) in LF male vs. C male in the KEGG androgen and estrogen metabolism pathway. Genes were normalized to the mean intensity of four C male placentae samples. The three bars in each colored box represent the mean normalized expression for, from left to right, C males, LF males, and VHF males.

Table S1. Variables affecting placental weight

Variable	P value
Maternal diet	0.38
Uterine position	0.001
Interaction between maternal diet and uterine position	0.38
Sex	0.04
Interaction between maternal diet and sex	0.002
Interaction between uterine position and sex	0.37
Interaction among maternal diet, uterine position, and sex	0.38

Table S2. Number of gene probes differentially regulated in male and female placentae (>2-fold; P < 0.05)

Genes	С	LF	VHF
Autosomal chromosomes	232	190	318
Up-regulated autosomal genes (males vs. females)	33	10	8
Down-regulated autosomal genes (males vs. females)	199	180	310
Sex chromosomes	20	9	26
Up-regulated sex chromosome genes (males vs. females)	9	3	10
Down-regulated sex chromosome genes (males vs. females)	11	6	16

Table S3. Male to female expression ratio for select autosomal genes in the C, LF, and VHF diet groups, as determined by microarray analysis

	Mouse GenBank		C		LF		VHF	
Gene name	Official symbol	accession no.	M/F ratio	P value	M/F ratio	P value	M/F ratio	P value
Aquaporin 9	Aqp9	NM_022026	0.63	0.37	0.72	0.31	0.41	<0.01
Chemokine (C-C motif) receptor 3	Ccr3	NM_009914	0.75	0.682	2.17	0.55	0.29	0.01
CEA-related cell adhesion molecule 1	Ceacam18	NM_028236	0.12	0.07	0.21	0.09	0.30	0.374
Estrogen receptor-α	Esr1	NM_007956	0.21	0.05	1.33	0.49	0.39	0.24
E26 avian leukemia oncogene 1, 5 ⁷ domain	Ets1	NM_011808	0.63	<0.01	0.86	0.04	0.85	0.2
Fibroblast growth factor 2	Fgf2	NM_008006	0.31	0.13	0.52	0.09	0.41	<0.01
Homeo box A11	Hoxa11	NM_010450	0.31	0.04	0.49	0.14	0.34	0.14
5-hydroxytryptamine (serotonin) receptor 2B	Htr2b	NM_008311	0.41	0.02	0.37	0.08	0.31	0.14
Kallikrein 1	Klk1	NM_010639	0.60	0.09	0.38	0.05	1.10	0.75
Olfactory receptor 1381	Olfr1381	NM_146469	0.62	<0.01	0.56	0.15	0.68	0.06
Olfactory receptor 154	Olfr154	NM_013728	2.39	<0.01	1.66	0.16	1.10	0.78
Olfactory receptor 433	Olfr433	NM_146717	0.32	0.21	0.67	0.54	0.21	0.04
Olfactory receptor 520	Olfr520	NM_147063	0.51	0.23	0.97	0.94	0.29	0.01
Protocadherin beta 18	Pcdhb18	NM_053143	0.66	0.13	0.34	<0.01	0.43	0.05
Renin1	Ren1	NM_031192	0.12	0.07	0.34	0.06	0.14	0.21
Renin2	Ren2	NM_031193	0.19	0.14	0.22	0.1	0.17	0.17

PNAS PNAS

Table S4.	Male/female ratio	for placental	expression of	f prolactin and	other	endocrine-related	genes, a	s determined	by microarra	зy
analysis										

PPL family gone name and other				Male/female ratio			
endocrine-related genes	Official symbol	Official alias symbol	Mouse GenBank accession no.	С	LF	VHF	
Prolactin	Prl	Prla1	NM_011164	1.30	1.06	0.86	
Prolactin family 2, subfamily a, member 1	Prl2a1	PLP-M	NM_019991	1.08	0.98	0.90	
Prolactin family 2, subfamily b, member 1	Prl2b1	PLP-K	NM_025532	1.21	1.02	1.06	
Prolactin family 2, subfamily c, member 3	Prl2c3	PLF2	NM_011118	1.13*	0.96	0.94	
Prolactin family 2, subfamily c, member 5	Prl2c5	MRP4	NM_181852	1.13	1.08	1.02	
Prolactin family 3, subfamily a, member 1	Prl3a1	PLP-I	NM_025896	0.92	0.95	1.03	
Prolactin family 3, subfamily b, member 1	Prl3b1	PL-II, Csh2	NM_008865	1.15**	1.05	0.96	
Prolactin family 3, subfamily c, member 1	Prl3c1	PLP-J	NM_013766	0.88	1.17	0.97	
Prolactin family 3, subfamily d, member 1	Prl3d1	PL-4 α , Csh1 α	M35662	1.06	1.07	0.84	
Prolactin family 3, subfamily d, member 2	Prl3d2	PL-4 β , Csh1 β	NM_172155	1.31**	1.14	0.87	
Prolactin family 4, subfamily a, member 1	Prl4a1	PLP-A	NM_011165	1.19	1.01	0.96	
Prolactin family 5, subfamily a, member 1	Prl5a1	PLP-L	NM_023746	1.30***	0.84	1.28**	
Prolactin family 6, subfamily a, member 1	Prl6a1	PLP_B	NM_011166	1.09	1.32	1.15	
Prolactin family 7, subfamily a, member 1	Prl7a1	PLP-E	NM_008930	1.19	1.38	0.95	
Prolactin family 7, subfamily a, member 2	Prl7a2	PLP-F	NM_011168	0.90	1.23	1.13	
Prolactin family 7, subfamily b, member 1	Prl7b1	PLP-N	NM_029355	1.03	1.13	1.08	
Prolactin family 7, subfamily c, member 1	Prl7c1	PLP-O	NM_026206	1.22**	1.18**	1.26	
Prolactin family 7, subfamily d, member 1	Prl7d1	PLP-RP	NM_011120	1.16	1.06	1.01	
Prolactin family 8, subfamily a, member 1	Prl8a1	$PLP-C\delta$	AK014414	0.87	1.11	1.09	
Prolactin family 8, subfamily a, member 6	Prl8a6	PLP-Cα	NM_011167	1.17	0.95	0.90	
Prolactin family 8, subfamily a, member 8	Prl8a8	PLP-Cγ	NM_023741	1.07	1.17	1.44	
Prolactin family 8, subfamily a, member 9	Prl8a9	$PLP-C\beta$	NM_023332	1.40	1.28	1.1	
Growth hormone	Gh	GH	NM_008117	1.13	1.17	0.66**	
Glycoprotein hormone, alpha subunit	Cga	LHa	NM_009889	1.17	1.48	1.10	
Luteinizing hormone, beta subunit	Lhb	LH	NM_008497	1.01	1.55**	0.87**	

P* < 0.00005; *P* < 0.05; ****P* < 0.01.

Other Supporting Information Files

Dataset S1 (XLS) Dataset S2 (XLS)

PNAS PNAS