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1. Multiple Players with Two Strategies
1.1. Infinite Populations.We first address the replicator dynamics of
multiplayer games with two strategies. If an A player interacts
with k other A players, it obtains the payoff ak. If a B player
interacts with k A players, it obtains the payoff bk. In an infinitely
large population in which the fraction of A players is x, the
probability that an A player interacts with k other A players is�

d− 1
k

�
xkð1− xÞd− 1− k : [S1]

Here,
�
d− 1
k

�
is the number of possibilities of arranging the

players. Thus, the average payoffs of A and B are given by

πA ¼ ∑
d− 1

k¼0

�
d− 1
k

�
xkð1− xÞd− 1− kak

πB ¼ ∑
d− 1

k¼0

�
d− 1
k

�
xkð1− xÞd− 1− kbk:

[S2]

These average payoffs are subject to the condition that the order
of the players does not matter. For example, in a d = 3 game, let
the player in the first position play A. Then, the remaining two
players can play a combination of A and B. The possible com-
binations are AAB and ABA. By writing the payoffs in the above-
mentioned manner, we assume that such combinations have the
same payoffs.
If the order of players does matter, then the payoff values are

given by βi0;i1;i2;i3;::::id− 1
. Here, i0 is the strategy of the focal player.

The ip are the strategies of the type in position p. For random
matching of players, we can map the βi0 ;i1 ;i2 ;i3;::::id− 1

to modified
payoffs ~ak and ~bk without changing the average payoffs of the
strategies. As an example, for d = 4, we have the modified
payoffs ~ak and ~bk as

~a0 ¼ βA;B;B;B ~b0 ¼ βB;B;B;B

~a1 ¼
βA;A;B;B þ βA;B;A;B þ βA;B;B;A

3
~b1 ¼

βB;A;B;B þ βB;B;A;B þ βB;B;B;A
3

~a2 ¼
βA;A;A;B þ βA;A;B;A þ βA;B;A;A

3
~b2 ¼

βB;A;A;B þ βB;A;B;A þ βB;B;A;A
3

~a3 ¼ βA;A;A;A ~b3 ¼ βB;A;A;A:
[S3]

We just need to substitute the above payoffs in place of ak and bk in
Eq. S2 to take into account the effect of the arrangement of
players. For any number of players such a generalization can be
easily obtained. Thus, the evolutionary dynamics under random-
interaction group formation remains unaffected by the fact that
the order of players does matter. When interaction groups are not
formed at random, this argument will, of course, fail in most cases.
The following analysis deals with πA and πB as in Eq. S2, but it

also holds when the order of players matters but interaction
groups are formed at random. The replicator equation is thus
given by (1, 2)

_x ¼ xð1− xÞðπA − πBÞ: [S4]

Both πA and πB are polynomials of degree d – 1. This implies that
the replicator equation can have up to d – 1 interior fixed points (3).
Maximum number of interior fixed points. For a d-player game to have
d – 1 interior fixed points, the quantities ak – bk and ak+1 – bk+1
must have different signs for all k. For example, in a three-player

game with a0 = + 1, a1 = – λ, a2 = +1 and b0 = –1, b1 = +λ,

b2 = –1, we have two internal equilibria at 1
2ð1±

ffiffiffiffiffiffiffi
λ− 1
λþ1

q
Þ for λ > 1.

However, this condition is necessary (because the direction of
selection can only change d – 1 times if the payoff difference
ak – bk changes sign d – 1 times), but not sufficient. For example,
in the above three-player game, there are no internal equilibria
for λ < 1.
Single interior fixed point. A d-player game has a single internal
equilibrium if ak – bk has a different sign from ak+1 – bk+1 for a
single value of k: In this case, A individuals are disadvantageous
at low frequency and advantageous at high frequency (or vice
versa). If ak – bk changes sign only once, then the direction of
selection can obviously at most change once. Thus, this condition
is sufficient.

1.2. Finite Populations. Let us now turn to the evolutionary
dynamics in finite populations. In a population of size N with j
individuals of type A, the probability of choosing a group that
consists of k A players and d – 1 – k B players is given by a hy-
pergeometric distribution. The probability that an A player in-
teracts with k other A players is given by

Hðk; d; j;NÞ ¼

�
j− 1
k

��
N − j

d− 1− k

�
�
N − 1
d− 1

� : [S5]

This leads to the average payoffs

πA ¼ ∑
d− 1

k¼0

�
j− 1
k

��
N − j

d− 1− k

�
�
N − 1
d− 1

� ak

πB ¼ ∑
d− 1

k¼0

�
j
k

��
N − j− 1
d− 1− k

�
�
N − 1
d− 1

� bk:

[S6]

We assume that strategies spread by a frequency-dependent
Moran process (4–6). The fitness is given by fA = exp(+ wπA) for
A players and fB = exp(+ wπB) for B players, where w measures
the intensity of selection (7). For w ≪ 1, selection is weak. For
w ≫ 1, selection is strong and only the fitter type reproduces. In
the Moran process, an individual is selected for reproduction at
random but proportional to its fitness. The individual produces
identical offspring. Another individual is chosen at random for
death. Consider j individuals of type A in a population of size N.
The number of A individuals increases with probability T+

j from j
to j + 1 if an A individual is selected for reproduction and a B
individual dies. We have

Tþ
j ¼ jfA

jfA þ ðN − jÞfB
N − j
N

[S7]

T −
j ¼ ðN − jÞfB

jfA þ ðN − jÞfB
j
N
: [S8]

The fixation probability of a single A individual in a population of
N is given by (8)
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ρA ¼ 1

1þ ∑
N − 1

m¼1
∏
m

j¼1

T −
j

Tþ
j

: [S9]

For the ratio of transition probabilities, we have

T −
j

Tþ
j

¼ fB
fA

¼ e−wðπA − πBÞ ≈ 1−wðπA − πBÞ: [S10]

The approximation is valid for weak selection, w ≪ 1. Note that
this is the only approximation we make, such that our result is
valid for any birth-death process with

T −
j

Tþ
j
≈ 1−wðπA − πBÞ: [S11]

For weak selection, the product in the fixation probabilities can be
approximated by a sum, which leads to

ρA ≈
1
N

þ w
N

∑
N − 1

m¼1
∑
m

j¼1
ðπA − πBÞf
Γ

: [S12]

In Appendix A, we show that

Γ ¼ 1
dðdþ 1Þ

�
N2

�
∑
d− 1

k¼0
ðd− kÞðak − bkÞ

�

−N
�

∑
d− 1

k¼0
ðkþ 1Þak þ ∑

d− 1

k¼1
ðd− kÞbk − d2b0

��
:

[S13]

As seen from Eq. S12, a strategy is favored by selection; that is, it
has a fixation probability larger than 1/N if Γ > 0. For any N, Γ > 0
can be represented by

∑
d− 1

k¼0

h
Nðd− kÞ− k− 1

i
ak > ∑

d− 1

k¼0

h�
N þ 1Þðd− kÞbk − ðdþ 1Þb0

i
_

[S14]

For d=2, this condition reduces to the condition (2N – 1)a0 + (N –

2)a1> (2N – 4)b0 + (N+1)b1, exactly as developed byNowak et al.
(9). For a large population size, the condition can be simplified to

∑
d− 1

k¼0
ðd− kÞak > ∑

d− 1

k¼0
ðd− kÞbk: [S15]

In large populations, we have ρA > 1/N if the condition Eq. S15 is
fulfilled. In the usual case of d = 2, the fixation probability of
strategy A is larger than 1/N if 2a0 + a1 > 2b0 + b1. This can be
rearranged to

x� ¼ b0 − a0
a1 − a0 − b1 þ b0

<
1
3
: [S16]

This is the 1/3-law first derived in ref. 9: A mutant takes over the
population with probability larger than neutral if the mutant is
advantageous when it has reached a fraction of 1/3. Condition
Eq. S15 represents a generalization of the 1/3 law for general d-
player games.
We can also compare the fixation probability ρA of a single A

player to the fixation probability ρB of a single B player. It has
been shown (7, 8) that

ρB
ρA

¼ ∏
N − 1

j¼1

T −
j

Tþ
j

¼ exp

"
−w ∑

N − 1

j¼1
ðπA − πBÞf

Φ

#
: [S17]

Note that if our previous approximation Eq. S11 holds, then we
obtain ρB

ρA
≈ 1−wΦ. Because we do not make any further ap-

proximations, our calculation remains valid for any birth-death
process fulfilling Eq. S11 under weak selection. As shown in
Appendix B,

Φ ¼ N
d

∑
d− 1

k¼0
ðak − bkÞ þ b0 − ad− 1: [S18]

From Eq. S17, it is clear that ρA > ρB if Φ > 0. This is equivalent
to the condition

∑
d− 1

k¼0
ðNak − ad− 1Þ> ∑

d− 1

k¼0
ðNbk − b0Þ: [S19]

Note that this condition is valid for any intensity of selection for
the process we use. For weak selection, it is valid for all processes

with
T −
j

Tþ
j
≈ 1−wðπA − πBÞ. For d = 2, expression Eq. S19 reduces

to (N – 2) (a1 – b0) > N(b1 – a0), which is the risk dominance
condition developed in ref. 10 for finite population size (see also
ref. 11 for the generality of this finding). For a large population,
the condition can be further simplified:

∑
d− 1

k¼0
ak > ∑

d− 1

k¼0
bk: [S20]

For two-player games, this reduces to risk dominance, a0 + a1 >
b0 + b1.
We can also incorporate mutations, which will complicate the

transition probabilities. For symmetric mutation rates, μA → B =
μB → A, the condition ρA > ρB is equivalent to a higher average
abundance of A compared to B given that μA → B and μB → A are
small. For d = 2, it has recently been shown that the abundance
condition does in fact depend neither on the mutation rate nor
on the intensity of selection (11). For d > 2, this statement
no longer holds, which can be seen from the high mutation
limit: If the mutation rates are very high, then the system will
be driven toward the point where the two abundances are
identical. The dynamics at this point, however, does not depend
on the parameters in the same way as ρA > ρB when it comes to
d-player games.

2. Multiplayer Games with Multiple Strategies
2.1. Infinite Populations. In the full multiverse, we have multiple
players playing multiple strategies. We are interested in the
maximum number of internal equilibria of a system, which will
help us understand the general features of the dynamics.
Consider a system with d players with n possible strategies.
Here we resort to the payoff values as given by βi0;i1;i2;i3;::::id− 1

,
because for random group formation a system where the
order of players does matter can always be reduced to a sys-
tem where the order does not matter. Here, i0 is the strategy
of the focal player. The ip are the strategies of the type
in position p. Then the average payoff of the focal player is
given by

πi0 ¼ ∑
n

i1¼1
∑
n

i2¼1
. . . ∑

n

id− 1¼1

�
∏
id− 1

k¼ i1
xk

�
βi0;i1;i2;i3 ;::::id− 1

: [S21]

From this it is clear that each variable xk is at most of degree d – 1.
Also, as there are n strategies, we have i0 = (1, 2, . . ., n), that is, n
such multivariate polynomials. Each multivariate polynomial is

in n – 1 variables (because of the normalization ∑
n

l¼1
xl ¼ 1). At the

fixed points, all these polynomials will be equal. Hence, if we
subtract one of the polynomials (say πn) from all, we have a
system of n – 1 multivariate polynomials, Δπi0 , equal to zero
(where i0 goes from 1 to n – 1). In each variable xk, the multi-
variate polynomial Δπi0 is at most of degree d – 1. Hence, there
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are at most d – 1 roots of Δπi0 in xk. Because this is valid for all
n – 1 functions of Δπi0 , there can be up to (d – 1)n−1 simulta-
neous roots of all Δπi0 . These are the interior fixed points of the
replicator dynamics. Thus, there can be at most

ðd− 1Þn− 1 [S22]

fixed points in the interior of the system. This holds for the full
system but also for any subspace in which fewer strategies are
available. For example, a game with d = 3 players and n = 4
strategies has up to 8 fixed points in the interior of the simplex
S4. On the faces of the simplex S4, represented by the simplex S3,
there can be up to 4 fixed points.
We now have an analytical method to deduce the maximum

number of internal equilibria. The question that now arises is:
With what probability do we see this maximum number of
equilibria? We address the problem by generating 108 payoff
matrices where the payoff values ak, bk, . . ., are drawn from a
uniform distribution for different configurations of d and n. As
discussed in the main text, the probability of obtaining the
maximum number of internal equilibria in a game with ran-
dom payoff entries reduces as the complexity increases in d as
well as n.
An example for d = 4 and n = 3. In this section, we describe the
parameters of Fig. 2 in the main text. The number of players d= 4
and the number of strategies n = 3. The total number of payoff
values is therefore nd, which is 81. Thus, for each strategy there
are 27 payoff values. This is the number of values we have to
consider when the order of player matters. If the payoffs are the
same for different arrangements then we reduce the payoff val-
ues, but we have to weight them by the number of their occur-
rence. Consider the three strategies to be A, B, and C. Solving
the replicator equation using the average payoffs calculated from
the payoffs from Table S1, we numerically obtain 9 fixed points
in the interior of the simplex. At these points, the frequencies of
all of the strategies are nonzero and the average payoff to each
strategy is equal.

2.2. Finite Populations. For finite populations and more than two
strategies, few analytical tools are available. The average abun-
dance under weak selection can be addressed using tools from
coalescence theory (12, 13).
For small mutation rates, the dynamics reduces to an

embedded Markov chain on the pure states of the system [see
Fudenberg and Imhof (14) for a proof]. Essentially, this means
that the dynamics is governed by dynamics on the edges of the
simplex Sn where only two strategies are present. This result can
be applied in a variety of contexts (15–17).
Both approaches can be adapted to d-player games.

Appendix A
Condition for the Comparison of One Strategy with Neutrality. We
first repeat the condition to prove

∑
N − 1

m¼1
∑
m

j¼1
ðπA − πBÞ

¼ 1
dðdþ 1Þ

�
N2

�
∑
d− 1

k¼0
ðd− kÞðak − bkÞ

�

−N
�

∑
d− 1

k¼0
ðkþ 1Þak þ ∑

d− 1

k¼1
ðd− kÞbk − d2b0

��
;

[S23]

where the payoffs are defined in Eq. S6. Because all of the aks
come from πA and all of the bks from πB, we can solve each
separately. For πA we have to show that

∑
N − 1

m¼1
∑
m

j¼1
∑
d− 1

k¼0

�
j− 1
k

��
N − j

d− k− 1

�
�
N − 1
d− 1

� ak ¼ ∑
d− 1

k¼0

N2ðd− kÞ−Nðkþ 1Þ
dðdþ 1Þ ak:

[S24]

Because this should hold for any choice of aks, we must show that

∑
N − 1

m¼1
∑
m

j¼1

�
j− 1
k

��
N − j

d− k− 1

�
�
N − 1
d− 1

� ¼ N2ðd− kÞ−Nðkþ 1Þ
dðdþ 1Þ : [S25]

We take out the factor
�
N − 1
d− 1

�− 1

on the left-hand side and get

back to the full expression only at the end. We consider the quantity

∑
N − 1

m¼1
∑
m

j¼1

�
j− 1
k

��
N − j

d− k− 1

�
: [S26]

Using the identity ∑
N − 1

m¼1
∑
m

j¼ 1
¼ ∑

N − 1

j¼ 1
∑

N − 1

m¼ j
, we obtain

∑
N − 1

m¼ 1
∑
m

j¼ 1

�
j− 1
k

��
N − j

d− k− 1

�

¼ ∑
N − 1

j¼ 1
∑

N − 1

m¼ j

�
j− 1
k

��
N − j

d− k− 1

�

¼ ∑
N − 1

j¼1

�
j− 1
k

��
N − j

d− k− 1

�
ðN − jÞ;

[S27]

where we performed the sum over m. Let us use the factor N – j
to split this expression into two sums. The first sum with the
factor N is given by

∑1 ¼ N ∑
N − 1

j¼1

�
j− 1
k

��
N − j

d− k− 1

�
: [S28]

We change the summation index by one, i = j – 1, and then
extend the sum up to N – 1,

∑1 ¼ N ∑
N − 2

i¼0

�
i

k

��
N − i− 1
d− k− 1

�

¼ N
�

∑
N − 1

i¼0

�
i

k

��
N − i− 1
d− k− 1

�
−
�
N − 1
k

��
0

d− k− 1

��
:

[S29]

The last term is zero as long as d – k – 1 > 0, that is, k < d – 1. We
can now apply a variant of Vandermonde’s convolution,

∑
l

i¼0

�
l− i
m

��
qþ i
n

�
¼

�
lþ qþ 1
mþ nþ 1

�
(18), on the first term and

obtain for k < d – 1 the result Σ1 ¼ N
�
N
d

�
: For the special case

of k = d – 1, we start from Eq. S28,

Σ1 ¼ N ∑
N − 1

j¼1

�
j− 1
d− 1

��
N − j
0

�
¼ N ∑

N − 1

j¼1

�
j− 1
d− 1

�
: [S30]

Using the identity ∑
N − 1

j¼1

�
j− 1
d− 1

�
¼

�
N − 1
d

�
, we obtain

Σ1 ¼ N
�
N − 1
d

�
¼ ðN − dÞ

�
N
d

�
. To summarize, we have for Σ1

Gokhale and Traulsen www.pnas.org/cgi/content/short/0912214107 3 of 5

http://www.pnas.org/cgi/data/0912214107/DCSupplemental/Supplemental_PDF#nameddest=st01
http://www.pnas.org/cgi/data/0912214107/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0912214107/DCSupplemental/Supplemental_PDF#nameddest=STXT
www.pnas.org/cgi/content/short/0912214107


Σ1 ¼
N
�
N
d

�
for 0≤ k< d− 1

N
�
N − 1
d

�
¼ ðN − dÞ

�
N
d

�
for k ¼ d− 1

:

8>>><
>>>:

[S31]

The second sum in Eq. S27 involving the additional factor j can
be rewritten as

Σ2 ¼ ∑
N − 1

j¼1
j
�
j− 1
k

��
N − j

d− k− 1

�

¼ ðkþ 1Þ ∑
N − 1

j¼1

�
j

kþ 1

��
N − j

d− k− 1

�
; [S32]

where we have used j
�
j− 1
k

�
¼ ðkþ 1Þ

�
j− 1
kþ 1

�
. We again shift

the summation index by one, i = j – 1, and extend the sum up to
N – 1,

Σ2 ¼ ðkþ 1Þ ∑
N − 2

i¼0

��
iþ 1
kþ 1

��
N − i− 1
d− k− 1

��

¼ ðkþ 1Þ ∑
N − 1

i¼0

��
iþ 1
kþ 1

��
N − i− 1
d− k− 1

��

− ðkþ 1Þ
��

N

kþ 1

��
0

d− k− 1

��
_ [S33]

The last term is zero for k < d – 1. For the first term, we can apply
the same variant of Vandermonde’s convolution as above,

∑
l

i¼0

�
l− i
m

��
qþ i
n

�
¼

�
lþ qþ 1
mþ nþ 1

�
, and obtain

Σ2 ¼ ðkþ 1Þ
�
N þ 1
dþ 1

�
: [S34]

For k = d – 1, we again start from Eq. S32, which yields

Σ2 ¼ d ∑
N − 1

j¼1

�
j
d

��
N − j
0

�
¼ d ∑

N − 1

j¼1

�
j
d

�
¼ d

�
N

dþ 1

�
: [S35]

We slightly rearrange these two results to a common binomial,

Σ2 ¼
ðkþ 1Þ N þ 1

dþ 1

�
N
d

�
for 0≤ k< d− 1

d
dþ 1

ðN − dÞ
�
N
d

�
for k ¼ d− 1

:

8>><
>>: [S36]

Combining these results with Eq. S31, we obtain

Σ1 −Σ2 ¼
�
N
d

�
1

dþ 1
×

Nðd− kÞ− k− 1 for 0≤ k< d− 1
N − d for k ¼ d− 1 :

�
[S37]

Note that these two expressions have the same form, such that
we obtain a single expression for Σ1 – Σ2 or, equivalently, for
Eq. S27,

∑
N − 1

m¼1
∑
m

j¼1

�
j− 1
k

��
N − j

d− k− 1

�
¼ Σ1 −Σ2 ¼

�
N
d

�
Nðd− kÞ− k− 1

dþ 1
:

[S38]

Together with the common factor
�
N − 1
d− 1

�− 1

, we obtain

∑
N − 1

m¼1
∑
m

j¼1

�
j− 1
k

��
N − j

d− k− 1

�
�
N − 1
d− 1

� ¼ N2ðd− kÞ−Nðkþ 1Þ
dðdþ 1Þ ; [S39]

which is Eq. S25.
The sums over πB can be solved in a similar way. In that case,

the special case is k = 0 rather than k = d – 1, which also in-
dicates the symmetry of the result. For the sums over πB, we
obtain

∑
N − 1

m¼1
∑
m

j¼1

�
j
k

��
N − j− 1
d− k− 1

�
�
N − 1
d− 1

� ¼

NðN − dÞ
dþ 1

for k ¼ 0

NðN þ 1Þðd− kÞ
dðdþ 1Þ for 1≤ k≤ d− 1

:

8>>><
>>>:

[S40]

Appendix B
Condition for the Comparison of Two Strategies. The statement to
prove is

∑
N − 1

j¼1
ðπA − πBÞ ¼ N

d
∑
d− 1

k¼0
ðak − bkÞ þ b0 − ad− 1: [S41]

As the aks are contributed only by πA and the bks only by πB, we
first need to show that

∑
N − 1

j¼1
πA ¼ N

d
∑
d− 1

k¼0
ak − ad− 1; [S42]

with the payoffs from Eq. S26. This holds for any choice of aks.
Thus, we only have to show that

1�
N − 1
d− 1

� ∑
N − 1

j¼1

�
j− 1
k

��
N − j

d− k− 1

�

¼
N
d

for 0≤ k< d− 1

N
d
− 1 for k ¼ d− 1

:

8><
>: [S43]

The sum has been solved above, cf Eq. S28, where we have shown

that ∑
N − 1

j¼1

�
j− 1
k

��
N − j

d− k− 1

�
¼

�
N
d

�
for 0 ≤ k < d – 1 and

∑
N − 1

j¼1

�
j− 1
k

��
N − j

d− k− 1

�
¼ N − d

N

�
N
d

�
for k = d – 1. Using the

identity
�
N
d

�
¼ N

d

�
N − 1
d− 1

�
, we directly obtain Eq. S43.

The equivalent condition for πB can be derived based on a
similar argument. As above, we have k = 0 as the special case
instead of k = d – 1 in the equivalent of Eq. S43,

1�
N − 1
d− 1

� ∑
N − 1

j¼1

�
j
k

��
N − j− 1
d− k− 1

�
¼

N
d
− 1 for k ¼ 0

N
d

for 0< k≤ d− 1
:

8>><
>>:
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Table S1. The reduced payoff table for the d = 4 and n = 3 game in Fig. 2 in the main text

Weight
(Total 27) 1 3 3 3 6 3 1 3 3 1

Configuration AAA AAB AAC ABB ABC ACC BBB BBC BCC CCC
A −9.30 3.83 3.86 −1.03 −1.00 −0.96 0.10 0.33 0.16 0.20
B 0.10 −1.03 0.13 3.83 −1.00 0.16 −9.30 4.06 −0.96 0.20
C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00

In total, there would be nd = 34 = 81 payoff entries. For each strategy, we would have had 27 entries. But
when we consider that the ordering does not matter, we just weight each configuration by the different ways
of ordering; for example, there are three orderings for AAB, that is, AAB, ABA, and BAA. In this way, we reduce
the number of payoff entries from 81 to 30.
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