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Theoretical Approach. The system that we describe consists of Np
polyacids end-grafted to a surface of total area A. The probability
of finding chain jðj ¼ 1; NpÞ in conformation α is given by PPðj; αÞ.
The polymer chain consists of nmonomer units, each one bearing
an acid group that can be either protonated (HAc) or deproto-
nated (Ac). The theory is derived by expressing the free energy of
the system as a functional of the polymer probabilities, the density
distribution of all the free molecular species in solution, and the
interaction fields. The free species include: water (w), cations (C),
and anions (A) from the solution dissociated added salt, protons
(Hþ), and hydroxyl ions (OH−). The total free energy is given by

F ¼ −TSmix − TSconf þ Evdw þ Erep þ Eelec þ Fchem;

where T is the absolute temperature and in terms of the density of
the different species, the probability of chain conformations and
the interactions fields is

βF ¼
Z

ρwðrÞ½lnðρwðrÞνwÞ − 1�drþ
Z

ρAðrÞ½lnðρAðrÞνwÞ − 1�dr

þ
Z

ρCðrÞ½lnðρCðrÞνwÞ − 1�dr

þ
Z

ρHþðrÞ½lnðρHþðrÞνwÞ − 1þ μ0Hþ �dr

þ
Z

ρOH−ðrÞ½lnðρOH−ðrÞνwÞ − 1þ μ0OH− �dr

þ∑
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j
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α

PPðj; αÞ lnPPðj; αÞ

þ
ZZ

βχgðjr − r0jÞ
2

hϕPðrÞihϕPðr0Þidrdr0

þ
Z �

hρQðrÞiβψðrÞ −
1

2
εβð∇ψðrÞÞ2

�
dr

þ
Z

hnPðrÞi½f cðrÞ½lnðf cðrÞÞ þ βμ0Ac− �

þ ð1 − f cðrÞÞ½lnð1 − f cðrÞÞ þ βμ0HAc��dr [S1]

where β ¼ 1∕kT and r is the position vector and the integrals run
over the whole space. The first five terms in Eq. 1 are the transla-
tional (mixing) entropies of the mobile species. ρiðrÞ is the num-
ber density of species i (i ¼ w;C;A;Hþ and OH−, respectively) at
position r and μ0Hþ and μ0OH− are the standard chemical potentials
of protons and hydroxyl ions, resp. The sixth term is the confor-
mational entropy of the polyelectrolyte chains. The next term is
the van derWaals (vdW) effective attractive energy between poly-
mer beads (1) that represents the hydrophobicity of the back-
bone. χ is the strength of the attractive interactions, i.e., a
measure of the hydrophobicity, and gðr − r0Þ is a distance depen-
dent van der Waals attractive term (see below). hϕPðrÞi is the
volume fraction of the polymer at r. The critical parameter χc
is that required to induce microphase segregation in a neutral
polymer layer in the limit of vanishing surface coverage and it
is close to the Θ conditions for the polymer backbone (2). Thus,
χc∕χ > 1 and χc∕χ < 1 correspond to less and more hydrophobic
backbones (good and poor solvent conditions in polymer litera-
ture), resp.

The eight term in Eq. 1 is the electrostatic contribution to the
free energy, where ΨðrÞ is the local electrostatic potential, ϵ is
the dielectric constant, and hρQðrÞi is the average charge density
at r, given by hρQðrÞi ¼ ∑iρiðrÞqi þ hnPðrÞif cðrÞqP, where the
sum runs over all charged mobile species and hnPðrÞi is the aver-
age number density of polymer segments at r, qi is the charge of
species i in units of the elemental charge, and f cðrÞ is the fraction
of charged acid groups at r. Note that the fraction of charged acid
groups depends on the position and therefore segments located in
different regions of the system can present different protonation
states. The last contribution to the free energy functional is the
mixing entropy between charged and uncharged groups, with μ0Ac−
and μ0HAc being their respective standard chemical potentials. The
standard chemical potentials are related to the acid-base equilib-
rium constant of an isolated group in the bulk by Ka ¼
C exp½−βμ0Hþ − βμ0Ac− þ βμ0HAc� (3), where C is a constant. Note
that the excluded volume repulsive interactions between seg-
ments (the term Erep) is not explicitly included in Eq. 1. As we
explain below, this contribution is considered in the chain genera-
tion process for intramolecular repulsions (only self-avoiding
conformations are included) and through packing constraints
for the intermolecular repulsions (3, 4), see Eq. 2 below.

Under the approximation of lateral homogeneity, the free en-
ergy of the 3D theory (Eq. 1) can be simplified to the free energy
of the 1D molecular theory (2, 3), allowing straightforward com-
parison between them. Note that the 1D molecular theory en-
ables to find the onset of instability of the homogeneous brush
but cannot predict the morphologies of the aggregates. Namely,
it provides with the yes or no answer to the question of stability.

The unknowns in Eq. 1 are the position dependent densities of
mobile species, the probability distribution functions for each
chain PPðj; αÞ, the electrostatic potential, and the fraction of
charged groups. They are found by a functional minimization
of the free energy subject to the packing constraints. The input
necessary for the theory includes a large representative set of un-
biased polymer conformations, the positions of the grafting
points, χc∕χ, the bulk pKa for the isolated acid groups, and
the experimentally controlled variables: i.e., bulk pH and salt con-
centration. The output includes all the average structural infor-
mation as well as the values of all the thermodynamic quantities.

Minimization of the Free Energy Functional. The minimization of
Eq. 1 is subject to two constraints. The packing or incompressi-
bility constraint takes into account the intermolecular repulsions
for each r:

ρAðrÞνA þ ρCðrÞνC þ ρHþðrÞνHþ

þ ρOH−ðrÞνOH− þ ρwðrÞνw þ hϕPðrÞi ¼ 1; [S2]

where the total polymer volume fraction, hϕPðrÞi, is given by

hϕPðrÞi ¼ ∑
NP

j
∑
α

PPðα; jÞnPðr; α; jÞνP [S3]

with nPðr; α; jÞ the number of segments that the jth chain in the
system has at r when it is in conformation α.

The other requirement is the global electroneutrality, given by:

Z
hρQðrÞidr ¼ 0. [S4]
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Here, hρQðrÞi is the average density of charges at r:

hρQðrÞi ¼ hnPðrÞif cðrÞqAc− þ ρAðrÞqA þ ρCðrÞqC þ ρHþðrÞqHþ

þ ρOH−ðrÞqOH− [S5]

with hnPðrÞi being the average number of polymer segments at r,
given by

hnPðrÞi ¼ ∑
NP

j
∑
α

PPðα; jÞnPðr; α; jÞ: [S6]

The packing (2) and electroneutrality (4) constraints are fulfilled
by introducing the Lagrange multipliers πðrÞ and λ, resp. The sur-
face is in equilibrium with the bulk solution that provides a bath
for protons, hydroxyl ions, cations, and anions. Therefore, to ful-
fill the thermodynamic requirement of constant chemical poten-
tial for all the free species everywhere in the system, i.e., at all r,
we consider a Legendre transform of the free energy, F. The pre-
sence of two constrains reduces the number of independent ther-
modynamic variables and we do not need to consider the
chemical potentials of protons, hydroxyls ions and solvent mole-
cules (3). We write a semi-grand canonical potential, including
the constraints and chemical potentials of anions and cations:

βW ¼ βF þ
Z

βπðrÞ
�
∑
i

ρiðrÞνi þ hϕPðrÞi − 1

�
dr

þ λ

Z
hρQðrÞidr − βμC

Z
ρCðrÞdr − βμA

Z
ρAðrÞdr [S7]

and find its extremum with respect to ρiðrÞ, f cðrÞ, ΨðrÞ, and
Ppðα; jÞ. It can be proven that λ, enforcing the electroneutrality
condition, is a constant term added to the electrostatic potential
and therefore it can included in the choice of boundary condi-
tions (4). πðrÞ is a position-dependant osmotic pressure (3, 5).

The variation, with respect to Ppðα; jÞ, leads to the probability
distribution function for the polymer chains:

PPðα; jÞ ¼
1

ξðjÞ exp
�
−
Z

nPðr; α; jÞ½lnðf cðrÞÞ þ qAc−βψðrÞ

þ βμ0Ac− �dr −
Z

νPðr; α; jÞ½βπðrÞ

þ
Z

βχgðjr − r0jÞhϕPðr0Þidr0�dr
�
: [S8]

In Eq. 8, ξðjÞ is the partition function of molecule j (normalization
constant that assures ΣαPpðα; jÞ ¼ 1).

Minimization of eq. (7) with respect to ρiðrÞ yields the local
densities of the anion, cation, proton, hydroxyl, and solvent:

ρAðrÞνw ¼ exp½−νAβπðrÞ þ βμA − qAβψðrÞ�; [S9]

ρCðrÞνw ¼ exp½−νCβπðrÞ þ βμC − qCβψðrÞ�; [S10]

ρHþðrÞνw ¼ exp½−νHþβπðrÞ − βμ0Hþ − qHþβψðrÞ�; [S11]

ρOH−ðrÞνw ¼ exp½−νOH−βπðrÞ − βμ0OH− − qOH−βψðrÞ�; [S12]

ρwðrÞνw ¼ expð−νwβπðrÞÞ: [S13]

By relating the chemical potentials of these species with the bulk
densities, we can rewrite Eqs. 9–13 in a more practical way:

ρAðrÞνw ¼ ρbulkA νw expð−νAβ½πðrÞ − πbulk� − qAβ½ψðrÞ − ψbulk�Þ;
[S14]

ρCðrÞνw ¼ ρbulkC νw expð−νCβ½πðrÞ − πbulk� − qCβ½ψðrÞ − ψbulk�Þ;
[S15]

ρHþðrÞνw ¼ ρbulkHþ νw expð−νHþβ½πðrÞ − πbulk�
− qHþβ½ψðrÞ − ψbulk�Þ; [S16]

ρOH−ðrÞνw ¼ ρbulkOH−νw expð−νOH−β½πðrÞ − πbulk�
− qOH−β½ψðrÞ − ψbulk�Þ; [S17]

ρwðrÞνw ¼ ρbulkw νw expð−νwβ½πðrÞ − πbulk�Þ: [S18]

The variation of the potential W , Eq. 7, with respect to f cðrÞ
yields:

ln
�

f cðrÞ
1 − f cðrÞ

�
¼ −βμ0Hþ − βμ0Ac− þ βμ0HAc − νHþβπðrÞ

− lnðρHþðrÞνwÞ: [S19]

This equation can be rewritten to resemble the more familiar
acid-base equilibrium equation:

K0
a ¼ exp½−βΔG0

c � ¼ ρHþðrÞνw
f cðrÞ

1 − f cðrÞ
expðνHþβπðrÞÞ: [S20]

Here, ΔG0
c ¼ μ0Hþ þ μ0Ac− − μ0HAc is the standard reaction free en-

ergy and K0
a is the thermodynamic equilibrium constant for de-

protonation reaction. The latter can be multiplied by the constant
factor ρbulkw ∕NA (with NA equal to Avogadro’s number) to obtain
the commonly used equilibrium constants based on molar bulk
concentrations (3).

The extremum of W , with respect to ΨðrÞ, gives rise to a
generalized Poisson–Boltzmann equation for the electrostatic
potential:

ε∇2ψðrÞ ¼ −hρQðrÞi: [S21]

The boundary conditions for Eq. 21 are:

lim
z→∞

ψðrÞ ¼ 0 [S22]

and, for an uncharged surface,

∂ψ
∂z

ðrÞ
����
z¼0

¼ 0. [S23]

Implementation of Periodic Boundary Conditions (PBC). The 3D
molecular theory was formulated above for a system that is
semi-infinite in the direction normal to the surface (z) and infinite
in the planes parallel to it. To solve the theory, we consider peri-
odic boundary conditions in the planes parallel to the surface. It is
natural to choose a hexagonal arrangement of grafting points
(Fig. S1). We have also carried out calculations with a square ar-
rangement of grafting points and found no discernible differences
in the morphologies of the domains. Here, we explicitly describe
the calculations with hexagonal arrangement because they are the
ones presented in the manuscript.
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The implementation of the hexagonal distribution of grafting
points with PBC in the planes parallel to the surface requires the
choice of a coordinate system that is different from the orthogo-
nal x; y; z Cartesian coordinates. In the v; u; z coordinate system,
the v and u axes are at 60° angle (Fig. S1). It is obtained by the
following transformations from the Cartesian coordinates:

ν ¼ cosðπ∕12Þx − sinðπ∕12Þyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðπ∕12Þ − sin2ðπ∕12Þ

p ; [S24]

u ¼ − sinðπ∕12Þxþ cosðπ∕12Þyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðπ∕12Þ − sin2ðπ∕12Þ

p ; [S25]

z ¼ z: [S26]

The Laplacian operator in the Poisson equation, Eq. 21 in hex-
agonal coordinates is:

∇2 ¼ ∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

¼
�

1

cos2ðπ∕12Þ − sin2ðπ∕12Þ
��

∂2

∂ν2
þ ∂2

∂u2

− 4 sinðπ∕12Þ cosðπ∕12Þ ∂2

∂u∂ν

�
þ ∂2

∂z2
: [S27]

The periodic boundary conditions for a function of r in an hex-
agonal periodic cell and using hexagonal coordinates are:

f ðνþ NνLν; uþ NuLu; zÞ ¼ f ðν; u; zÞ; [S28]

where Lv and Lu are the dimensions of the periodic box in the v
and u directions and Nv and Nu are integers. The molecular the-
ory is then discretized and solved in the hexagonal coordinates.
The functions for the density of mobile species, polymer volume
fraction, electrostatic potential, and fraction of charged groups
are then casted back to Cartesian coordinates for visualization.
The coordinates of point ðv; u; zÞ in the hexagonal system are con-
verted to a point ðx; y; zÞ in the Cartesian system by using the fol-
lowing relationships:

x ¼ cosðπ∕12Þνþ sinðπ∕12Þuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðπ∕12Þ − sin2ðπ∕12Þ

p ; [S29]

y ¼ sinðπ∕12Þνþ cosðπ∕12Þuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðπ∕12Þ − sin2ðπ∕12Þ

p ; [S30]

z ¼ z: [S31]

Numerical Solution. To obtain numerical results from the molecu-
lar theory, we must solve the nonlinear integro–differential equa-
tion system that results from substituting expressions (8, 14–(19)
into the packing constrain, Eq. 2 and the generalized Poisson–
Boltzmann equation, Eq. 21. To do that, we discretize the v, u
and z coordinates into cells of dimesions δ × δ × δ. From pre-
liminary calculations we have chosen a discretization step of
δ ¼ 0.5 nm. The numbers of discretization cells along the v
and u axis, Mv and Mu, are Lv∕δ and Lu∕δ. The size of the per-
iodic box was chosen to be larger than the morphologies under
study, but to be small enough to allow systematic calculations. In
this work, we considered 64 chains in our periodical cell and,
therefore, Lv and Lu range from 40 to 72 depending on the graft-
ing density. We also performed some calculations with a periodic
cell of 144 chains that yielded very similar results. The z-direction

is in principle semi-infinite but, in practice, we consider a distance
from the surface long enough to guarantee the asymptotic con-
vergence of electrostatic potential and the concentrations of the
free species to their bulk value. Typical values of the number of
cells along the z-direction (Mz) range from 40 to 80. The total
number of cells in the system is, thus, of the order of 105. The
equations obtained by minimizing the free energy are discretized
by replacing integrals by sums and derivatives by finite differ-
ences. Finally, we arrive to a set of the order of 105 equations
(twice the number of cells in the system) that is solved by using
Jacobian–Free Newton method and a parallel implementation.

To solve the discretized equations, we should start with an in-
itial guess. While we have observed spontaneous symmetry break-
ing even with totally symmetric initial guesses, we found more
convenient to use asymmetric initial guesses. For a given condi-
tion, different initial guesses yield in general the same morphol-
ogy but with different specific details that correspond to different
local minima of the free energy. We tried different initial guesses
for each condition (in particular for those in the boundaries be-
tween morphologies) and chose the equilibrium state to be the
one with the lowest free energy.

The discretized packing constraint, Eq. 2 and the generalized
Poisson–Boltzmann equation, Eq. 21, are given by:

ρAðk; l; mÞνA þ ρCðk; l;mÞνC þ ρHþðk; l; mÞνHþ

þ ρOH−ðk; l; mÞνOH− þ ρwðk; l; mÞνw þ hϕPðk; l;mÞi ¼ 1 [S32]

and

�
1

cos2ðπ∕12Þ − sin2ðπ∕12Þ
�
½ψðkþ 1; l; mÞ − 2ψðk; l;mÞ

þ ψðk − 1; l; mÞ
þ ψðk; lþ 1; mÞ − 2ψðk; l; mÞ þ ψðk; l − 1; mÞ
− sinðπ∕12Þ cosðπ∕12Þ:
× fψðkþ 1; lþ 1; mÞ − ψðkþ 1; l − 1; mÞ − ψðk − 1; lþ 1; mÞ
þ ψðk − 1; l − 1; mÞg�
þ fψðk; l; mþ 1Þ − 2ψðk; l; mÞ þ ψðk; l;m − 1Þ
¼ −hρQðk; l; mÞiδ2∕ε [S33]

Note that the continuous indexed v, u, and z have been replaced
by the integers k, l, and m. These three indexes define cells in the
periodic box that can take values between one andMv,Mu, orMz,
resp. When a value outside the cell is needed in the v, u plane
(i.e., boundary cells in Eq. 33), a discretized form of the PBC
in Eq. 28 is used:

f ðkþ NνMν; lþ NuMu;mÞ ¼ f ðk; l; mÞ: [S34]

The terms required to solve the system of coupled Eqs. 32 and 33
are the discretized forms of Eqs. 8 and 14–19.

The densities of mobile species are:

ρAðk; l; mÞνw ¼ ρbulkA νw expð−νAβ½πðk; l;mÞ − πbulk�
− qAβ½ψðk; l; mÞ − ψbulk�Þ; [S35]

ρCðk; l; mÞνw ¼ ρbulkC νw expð−νCβ½πðk; l; mÞ − πbulk�
− qCβ½ψðk; l; mÞ − ψbulk�Þ; [S36]
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ρHþðk; l;mÞνw ¼ ρbulkHþ νw expð−νHþβ½πðk; l;mÞ − πbulk�
− qHþβ½ψðk; l; mÞ − ψbulk�Þ; [S37]

ρOH−ðk; l; mÞνw ¼ ρbulkOH−νw expð−νOH−β½πðk; l; mÞ − πbulk�
− qOH−β½ψðk; l; mÞ − ψbulk�Þ; [S38]

ρwðk; l;mÞνw ¼ ρbulkw νw expð−νwβ½πðk; l;mÞ − πbulk�Þ: [S39]

The fraction of charged groups is given by

ln
�

f cðk; l;mÞ
1 − f cðk; l;mÞ

�
¼ −βμ0Hþ − βμ0Ac− þ βμ0HAc − νHþβπðk; l;mÞ

− lnðρHþðk; l;mÞνwÞ: [S40]

Finally, the PDFs for the polymer are:

PPðα; jÞ ¼
1

ξðjÞ exp
�
−∑
k;l;m

nPðk; l; m; α; jÞ½lnðf cðk; l; mÞÞ

þ qAc−βψðk; l; mÞ�

− ∑
k;l;m

νPðk; l; m; α; jÞ
�
βπðk; l; mÞ

þ ∑
k0;l0 ;m0

βχgðk − k0; l − l0; m −m0ÞhϕPðk0; l0; m0Þi
��

:

[S41]

In this equation, βμ0A− is included in the normalization term. In
the sums with indexes k0, l0, andm0, the interaction with segments
outside the periodic box should be considered by means of Eq. 34.

The discretized function for gðjr − r0jÞ is gðk − k0; l − l0;
m −m0Þ. This is obtained by integration of the vdW attractions
in the cells of the hexagonal lattice by using a Monte Carlo pro-
cedure. More explicitly, we find the integrals

gðk − k0; l − l0; m −m0Þ

¼
Z

δðk−k0þ1
2Þ

δðk−k0−1
2Þ

Z
δðl−l0þ1

2Þ

δðl−l0−1
2Þ

Z
δðm−m0þ1

2Þ

δðm−m0−1
2Þ

�
a

jr − r0j
�

6

dνdudz [S42]

constrained to a < jrj < 1.5δ, where a is the segment length.
Visualization and plotting of 3D functions have been per-

formed with Paraview (www.paraview.org).

Molecular Model.We define here the molecular details of the spe-
cies that are used in the calculations. The size and charge of the
molecular species in the system are compiled in Table S1. The
sums over all polymer conformations (e.g., in Eq. 6) are treated
approximately by considering a very large representative set of
5.105 conformations for each chain in the periodic box that
are randomly generated in free space with the rotational-isomeric
model (RIS) (6) where each segment bears an acid group and has
a bond length of 3.5 Å. The model for the chain is one that we
have used in earlier work and it provides a good representation of
the chain conformations for a generic polyacid (3), for modeling a
specific chemical polymer we can vary the bond length and
segment volume and then obtain predictions in very good agree-
ment with experimental observations (4, 7). We include in this set
the 12 30° rotations around the z-axis for each randomly gener-
ated bond sequence to ensure that the set of polymer conforma-
tions does not introduce a bias toward some particular direction.
We use the same set of conformations for each of the NP poly-

mers, with the only difference that each conformation is trans-
lated to have the first segment on each of the NP grafting
points. These points are placed in the centers of the discretization
cells to assure the equivalency of all the chains in the system, thus,
limiting the possible surface coverages that can be studied. The
use of completely equivalent chain conformations in all the graft-
ing points implies that the morphologies obtained are the result
of spontaneous symmetry breaking in the free energy. Note, that
the micelles are not all identical. This implies that this arrange-
ment of the aggregates has a lower free energy than a system with
identical micelles. The theory is capable of providing this detailed
description because we explicitly include the inhomogeneities in
all three dimensions.

Molecular Theory for Not-Regulating Polyacids.The formulation and
implementation of the theory for non-regulating polyacids are si-
milar to that for weak polyelectrolytes, but we drop the last term
in Eq. 1 (entropy of mixing between protonated and unproto-
nated groups) and fix the fraction of charged groups for all r
(all segments bear the same charge).

The phase diagram of the non-regulating polymers repre-
sented in a linear scale for the degree of dissociation f bulk is given
in Fig S2.

Simple analysis for the local pH within micellar aggregates. We pro-
pose, here, a simple analysis to explain the universal behavior ob-
served in Fig. 4D for the dependence of the local pH inside the
aggregates as a function of bulk conditions. Let us write the ap-
proximate expression for the Donnan potential inside the mi-
celles for the case when the local concentration of negative
charges (ρmicelle

Qpol ) is much higher than the ionic strength:

ΔϕD ¼ RT
F

ln
�
ρmicelle
QPol

Csalt

�
: [S43]

This expression is only of approximate validity for the case of mi-
cellar aggregates in Fig. 4D because their size (5–10 nm) is com-
parable to the Debye length (0.96 nm for Csalt ¼ 0.1 M, 6.8 nm
for Csalt ¼ 0.002 M) (8).

The local proton concentration inside the aggregates is ap-
proximately given by:

½Hþ�micelle ¼ ½Hþ�bulk: exp
�
−
FΔϕD

RT

�
: [S44]

Combining Eqs. 43 and 44 yields:

pHmicelle − pHbulk ¼ log10

�
Csalt

ρmicelle
Qpol

�
: [S45]

We can now use Eq. 45 to consider both the regulating (weak)
and the not-regulating grafted polyacid layers.

Regulating polyacid.
In this system, the fraction of charged segments inside the micelle
is given by the local pH.

We can write:

ρmicelle
Qpol ¼ ρmicelle

0 fmicelle
c [S46]

where ρmicelle
0 is the concentration of polymer segments inside

the aggregates (which is in the order of ∼10 M) and fmicelle
c

is the fraction of these segments that are charged. We now write
the expression for the acid-base chemical equilibrium inside the
micelle:
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pHmicelle ¼ pKa þ log10

�
fmicelle
c

1 − fmicelle
c

�
: [S47]

In the conditions where micellar agreggates exists (fmicelle
c ≪ 1),

we approximate Eq. 47 by:

pHmicelle ¼ pKa þ log10ðfmicelle
c Þ: [S48]

We combine Eqs. 45, 46, and 48:

pHmicelle − pHbulk ¼ log10

�
Csalt

ρmicelle
0

�
− pHmicelle þ pKa [S49]

and, after some rearrangements, obtain

pHmicelle ¼ pHbulk þ log10ðCsaltÞ
2

þ pKa − log10ðρmicelle
0 Þ

2
: [S50]

Therefore, the prediction is that the local pH within the aggre-
gates will increase linearly, with a slope of ½, with bulk pH and

log10ðCsaltÞ (as observed in Fig. 4D), providing that logðρmicelle
0 Þ

does not vary too much with solution conditions. This simple
model does not make predictions about this point, but an inspec-
tion of the predictions of the molecular theory confirms the ap-
proximated validity of such assumption. For instance, the volume
fraction inside the micelles stays within the range 0.45–0.65 for all
the conditions in Fig. 4D and, thus, 0.83 < logðρmicelle

0 ∕MÞ < 1.0.

Not-regulating polyelectrolyte.
In this case, the concentration of segments inside the aggregates,
ρmicelle
Qpol , is fixed and independent of bulk pH and ionic strength
(i.e., Eq. 47 is no longer valid). We can rearrange Eq. 45 as

pHmicelle ¼ pHbulk þ log10ðCsaltÞ − log10ðρmicelle
Qpol Þ [S51]

and, thus, the pH inside the aggregates scales linearly with bulk
pH and log10ðCsaltÞ with a slope of one. This is in good agreement
with the slope predicted by solving the 3Dmolecular theory keep-
ing fixed the value of f c (Fig. S3).
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Fig. S1. Periodic cell used in the work with the grafting sites arranged in a hexagonal pattern (Orange Circles). The cell used in the work contained 64 different
chains instead of 9.
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Fig. S2. Morphology diagram for a not-regulating polyacid layer. The plane shown corresponds to bulk dissociation fraction (fbulk) as a function of the ef-
fective hydrophobicity of the backbone (χc∕χ). This figure corresponds to the lower diagram in the Fig. 1 with the difference being that the diagram is plotted
here as a linear function of fbulk. Each symbol is obtained by solving the 3D theory for a given set of experimentally controlled variables. Different symbols and
uppercase letters indicate the resulting morphologies: M (Squares), micelles; S (Triangles), stripes; H (Circles), holes; and HB (Crosses), homogeneous brush.
NP∕A ¼ 0.111 chains∕nm2, n ðsegments per chainÞ ¼ 50, l ¼ 0.35 nm (polymer segment length), Csalt ¼ 0.1 M, and pKa ¼ 5.0 were used in the calculations.

Fig. S3. Local pH inside quenched (not regulating) polyelectrolyte micellar aggregates for fixed fraction of charged segments (fc ¼ 0.05) as function of the
relevant positive ions bulk concentrations. The Dashed Blue Line has a slope of one, as predicted by Eq 51. Calculations correspond to: χc∕χ ¼ 0.53, n ¼ 50,
NP∕A ¼ 0.111 chains∕nm2, and pKa ¼ 5.0.

Table S1. Molecular details of the species in the system.

Electrostatic charge, qi Molecular (segment) volume, vi

Water 0 30 Å3

Salt Cation +1 33.5 Å3

Salt Anion −1 33.5 Å3

Proton +1 30 Å3

Hydroxyl ions −1 30 Å3

Polymer Segment −1 (pKa ¼ 5.0) 110 Å3
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