Supporting Information

Sanz et al. 10.1073/pnas.0907942107

Fig. S1. CD34, CD10, and CD19 expression profiles after 10 days of CD34^{high}Lin⁻ development in S17 cocultures. (A) CD34 levels before (D0) or after 10 days (D10) in S17 cocultures. Three levels of CD34 intensity, CD34^{high}(\bullet), CD34^{int/low}(\bullet), and CD34^{neg}(\bullet), were defined. (B) Dot-plots of CD10 and CD19 expression for each subset gated by CD34 levels as in A for D0 and D10 time points. Background levels to define the indicated quadrants and statistics were set with isotype-matched reagents. We can ascertain that detection here of two-layered CD34⁺ pathways that generate pro-B cells is not attributable to differences in key materials, using spare frozen samples from the same serum and S17 cell batches that we and others used in long-term cultures "without CD34⁺ cells" [Sanz E, Alvarez-Mon M, Martínez-A C, de la Hera A (2003) Human cord blood CD34+Pax-5+ B-cell progenitors: Single-cell analyses of their gene expression profiles. Blood 101:3424–3430]. Average yields are displayed in Fig. 1. Results are representative of eight experiments from a donor distinct to Fig. 1.

Fig. 52. CD10 and CD19 expression contour-plots after 24 days CD34^{high}Lin⁻/S17 coculture when initial CD10⁻CD19⁺ pre/pro-B-cell and late CD10⁺CD19⁻ CLP/ early-B-cell pathways of pro-B-cell development overlap (*A*) or after 21 days of CB CD34⁺CD10⁺CD19⁻/S17 coculture used as a fresh CLP control source free of developing CD34⁺CD10⁻CD19⁺ cells (*B*). All our progenitor/S17 cocultures were recombinant cytokine-free. It might be argued that others have analyzed the initial wave of CB CD34^{high} SC development in stroma systems tuned with exogenous cytokines for higher cell yield (~1,500-fold from 2–4 weeks) (1). However, in the latter system, most progeny of the first 2 weeks belong to lineages other than CD19⁺ B-cell progenitors (i.e., <0.02% CD19⁺ cells) and rapid CD34 pool exhaustion occurs that does not allow visualization of the CD34⁺ B-cell progenitors of CD34⁺ pro-B cells (1). Our yield and efficiency of pro-B-cell generation from fresh CB CLPs also compare favorably with quantitative data from valuable multilineage systems using stroma supplemented with cytokines (i.e., 3.6-fold expansion of input cell numbers with 5% CD19⁺ cells in 3-week cultures) (2). Plots are representative of six and three experiments, respectively.

1. Johnson SE, Shah N, Panoskaltsis-Mortari A, LeBien TW (2005) Murine and human IL-7 activate STAT5 and induce proliferation of normal human pro-B cells. J Immunol 175:7325–7331. 2. Rossi MI, et al. (2003) B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood 101:576–584.

Fig. S3. CD34^{high}CD45RA⁺CD10⁺CD19⁻ precursors generated in vitro are CLPs that can develop into DC and NK cell progenies. CD34^{high}CD45RA⁺CD10⁺CD19⁻ precursors were sorted from 2-week CB CD34^{high}Lin⁻/S17 cocultures and replated for 6 days in stroma-free complete medium supplemented with 10% (vol/vol) FBS plus 20 ng/mL IL-4 plus 50 ng/mL GM-CSF (both from R&D Systems) (A) or further washed and the immature DCs cultured for an additional 2 days in fresh medium plus 0.5 µg/mL LPS (Sigma) in analyses of DC maturation (*B*). Resulting cells from *A* and *B* were labeled with antibodies to CD80, CD83, CD86, CD1a, and HLA-DR to assess immature DC and mature DC fates. CD34^{high}CD45RA⁺CD10⁺CD19⁻ progenitors were CD80⁻, CD83⁻, CD86⁻, CD1a⁻, and HLA-DR^{low} before exposition to GM-CSF plus IL-4 (Table S1). CD80⁺CD86⁺HLA-DR^{bright} large cells CD83⁻CD1a⁺ were typical immature DCs by phenotype. Mature DCs acquired CD83 and coexpressed much higher levels of CD86 and CD80. (C) Sorted CD34^{high}CD45RA⁺CD10⁺CD19⁻ progenitors were cultured 6 days in stroma-free complete medium supplemented with 10% FBS plus 25 ng/mL IL-15 (R&D Systems) and labeled with antibodies to CD56, CD16, and CD3. The original sorted population expressed none of the indicated markers. CD34⁺CD10⁺CD19⁻ precursors developed in IL-15-generated lymphoid progeny with the phenotype of two NK cell lineages, either CD3⁻CD56⁺CD16⁺, as reported for human CD34⁺ thymic CLP and lymph node CD34^{int}CD45RA^{int}CD10⁺CD19⁻ NK cell precursors. Experiments are representative of four different experiment sets with four independent CB samples.

Fig. 54. Phase-contrast microscopy photographs. Sorted CB CD34⁺CD10⁺CD19⁻ and CD34⁺CD10⁻CD19⁺ cells differentiated under B-lineage (S17 stroma), immature DC (IL-4 + GM stroma-free), and DC maturation (LPS) conditions at the read-out points indicated in Fig. S3. Unlike CD34⁺CD10⁺CD19⁻ differentiating cells, CD34⁺CD10⁻CD19⁺ cells die in the presence of cytokine but absence of S17 cells. Immature DCs respond to LPS by polarization. Images are representative of four experiments.

Fig. S5. $CD7^{high}$ expression in the CD34⁺CD10⁻CD19⁺ precursors differentiated in vitro. Sorted CD34^{high}CD10⁻CD19⁻ precursors were cultured on S17 stroma for 2 weeks. Their progeny were stained with CD7-, CD10-, and CD19-specific antibodies and submitted to flow cytometry. (*Left*) Quantile plot displays CD10 × CD19 expression gated in total live cells. Numbers associated with R1–R4 regions represent the frequency of positive cells in the region. (*Right*) Histograms of CD7 distribution for cells in the respective R1–R4 subsets. The numbers in the histograms indicate the percentage of CD7⁻ and CD7⁺ cells. The tic in the bar shows the negative threshold for statistics, which was set using isotype-matched antibodies and fluorescence-minus-one methods. The input cell number was 10⁴ cells per well, and the average yield was 55.38 ± 5.3 × 10⁴ cells per well at day 14. Data are representative of results from three independent experiments.

B)

A)

11 days culture

Fig. 56. Quantile plots of CD34, CD7, CD10, and CD19 distribution from either sorted fresh CD34⁺CD10⁻CD19⁻ CB cells (*A*) or their progeny after 11 days in S17 coculture (*B*). Two and 10 regions in *A* and *B*, respectively, labeled with roman numerals (I–X) were defined in the CD34 \times CD7 "quantile" contour plots [Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. *Nat Immunol* 7:681–685.], and the indicated gated live-cell subpopulations were analyzed for their correlated CD10 \times CD19 distribution. The legend on top of the CD10 \times CD19 plots indicates the percentage of the gated cells and their phenotype in the CD34 \times CD7 plots. The numbers in the four corners of the CD10 \times CD19 plots indicates the percentage of cells in each quadrant. The negative thresholds were set up using specificity controls as explained in *Materials and Methods*. Development events may be ordered as follows: (*i*) CD34⁺⁺CD7⁺⁺CD10⁻ cells acquired low CD19 levels; (*ii*) CD34⁺⁺CD7⁺⁺⁺CD10⁻ and CD34⁻⁺CD7⁺⁺⁺CD10⁻ cells showed CD19 stepwise increases to CD19^{inth} and CD19^{high} expression levels, respectively, which was coincident with CD34 reduction and maximal CD7 levels; and (*iii*) CD34⁻⁻CD19^{high} CD10⁻ cells acquired CD10⁻ benotypes (⁺⁺⁺, \sim high; ⁺⁺, \sim int; ⁺, \sim low). Data are representative of three similar experiments performed with independent CB donor samples.

	CD34 ^{high} CD45RA ⁺ CD10 ⁺ CD19 ⁻	CD14 ⁺ -derived iDCs	CD14 ⁺ -derived mDCs
CD80	<1	52	99.6
CD83	<1	2–20	90
CD86	<1	96	99
CD1a	<1	98.9	8–16
HLA-DR	80 (low intensity)	90	97

Table S1. Expression of DC differentiation and maturation markers by CD34^{high}CD45RA^+CD10^+CD19^- cultured progenitors before exposition to GM-CSF + IL-4

Numbers are given as percentage of positive cells. IDCs, immature DCs; mDCs, mature DCs.

PNAS PNAS