Supporting Information

Dunn et al. 10.1073/pnas.1001647107

SI Materials and Methods

C. elegans Genetics. The known Notch pathway alleles used in this study were LG I, sup-17(n1258ts) (1, 2); LG III, sel-8(sa54) (1, 3), lin-12(n302) and lin-12(n676) (4, 5), glp-1(ar202ts) (6) glp-1 (e2141) (7) and glp-1(bn18ts) (8); LG X, adm-4 (9). Additional information about these alleles, as well as the incidental mutations dpy-8(e130), dpy-20(e1282) and unc-119(ed3), can also be found in Wormbase (www.wormbase.org).

C. elegans RNAi. Individual bacterial strains producing doublestranded RNA (dsRNA) targeting the 21 identified tetraspanin genes were obtained (10) or created. Starved, synchronized, L1stage *glp-1(ar202)* hermaphrodites were placed on dsRNAexpressing bacteria, and plates were shifted to 25 °C for three days. The production of progeny was evidence of suppression.

Plasmids Used to Assess Rescue of tsp-12(ok239). Plasmid p809 was generated by amplifying the genomic region IV: 10149012 to IV: 10151919, containing the *tsp-12* 5' flanking sequence, coding region, and *tsp-12* 3' UTR. A PCR was performed using primers 5'-ATAAGAATGCGGCCGCCTCGAGGTGAAATTTTAGTTT TAGATTTGAAATTTATGATTTCATTTGGAAGATTTAAGTTT GAATCGAATAACTGTTATTTGGAAGATTTAAAGTG-3' and 5'-CT GAATCGAATAACTGTTATTTGGAAGATTTAAAGTG-3' with N2 genomic DNA as a template (Table 1). This PCR product was cloned into pCR-XL-TOP (Invitrogen). p809 at 198 ng/µL was bombarded into *unc-119(ed3)* worms along with pDP#MM016b [*C. elegans unc-119(+)*] (11) at 87 ng/µL to generate *arIs119* and *arIs120*.

As a negative control for potential transgene marker effects, we used plasmid p816, which is a transcriptional fusion containing approximately 1.9 kb of the *tsp-12* 5' flanking region fused to 2Xnls::yfp and the *tsp-12* 3' UTR (details available upon request). p816 at 68 ng/mL was used to generate *arls135* and

- Tax FE, Thomas JH, Ferguson EL, Horvitz HR (1997) Identification and characterization of genes that interact with lin-12 in Caenorhabditis elegans. *Genetics* 147: 1675–1695.
- Wen C, Metzstein MM, Greenwald I (1997) SUP-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. *Development* 124:4759–4767.
- Doyle TG, Wen C, Greenwald I (2000) SEL-8, a nuclear protein required for LIN-12 and GLP-1 signaling in Caenorhabditis elegans. Proc Natl Acad Sci USA 97:7877–7881.
- Greenwald I, Seydoux G (1990) Analysis of gain-of-function mutations of the lin-12 gene of Caenorhabditis elegans. *Nature* 346:197–199.
- 5. Greenwald IS, Sternberg PW, Horvitz HR (1983) The lin-12 locus specifies cell fates in Caenorhabditis elegans. *Cell* 34:435–444.

arIs136 using the same bombardment technique as above by cobombardment with pDP#MM016b, each at 68 ng/mL.

Cells and Cell Culture. HeLa cells were grown in DMEM supplemented with 10% FBS, 100 U/mL penicillin G, and 100 μ g/mL streptomycin at 37 °C in a humidified atmosphere under 5% CO₂.

HeLa Cell RNAi. siRNA targeting human TSPAN5,TSPAN33, CD9, CD81 and the "AllStars" control siRNA were purchased from Qiagen (catalog numbers SI0415665, SI04249532, SI03650318, SI02777187, and SI02777236).

Quantitative Real-Time PCR. Total RNA from HeLa cells was extracted with RNAqueous kit (Ambion) following the manufacturer's instructions (Figs. 1 and 2 and Fig. S1). cDNA was generated with the ThermoScript RT-PCR system (Invitrogen) and analyzed by quantitative real-time PCR using SYBRGreen RT-PCR Core Reagents kit and the 7300 Real-Time PCR System, both from Applied Biosystems. Relative expression levels were based on *GAPDH* levels as reference control. Primer sequences are given here.

GAPDH Fw: 5' GAA GGT GAA GGT CGG AGT 3' GAPDH Rv: 5' GAA GAT GGT GAT GGG ATT TC 3' TSPAN5 Fw: 5' ACCCAGTTTGGCTCTTCCTT 3' TSPAN5 Rv: 5' CAATGTCATCCCGATATGCTC 3' TSPAN33 Fw: 5' CCTCACCGCTGTGTTCCT 3' TSPAN33 Rv: CTGGCCAAAATCAATGAGGT 3' TSPAN33 Rv: CTGGCCAAAATCAATGAGGT 3' CD9 FW: 5' TTGGTGATATTCGCCATTGA 3' CD9 RV: 5' GCATAGTGGATGGCTTTCAG 3' CD81 FW: 5' TGACCACCTCAGTGCTCAAG 3' CD81 RV: 5' ATGATCACAGCGACCACGAT 3'

- Pepper AS, Killian DJ, Hubbard EJ (2003) Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition. *Genetics* 163:115–132.
- Priess JR, Schnabel H, Schnabel R (1987) The glp-1 locus and cellular interactions in early C. elegans embryos. Cell 51:601–611.
- Kodoyianni V, Maine EM, Kimble J (1992) Molecular basis of loss-of-function mutations in the glp-1 gene of Caenorhabditis elegans. *Mol Biol Cell* 3:1199–1213.
- Jarriault S, Greenwald I (2005) Evidence for functional redundancy between C. elegans ADAM proteins SUP-17/Kuzbanian and ADM-4/TACE. Dev Biol 287:1–10.
- Kamath RS, et al. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237.
- 11. Maduro M, Pilgrim D (1995) Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. *Genetics* 141:977–988.

