Supporting Information

Neumann et al. 10.1073/pnas.1001681107

Fig. S1. Analysis of protein expression and purification. (*A*) Western blot analysis showing expression of ChIA protein and recovery in the soluble fraction of the cell lysate. Proteins were blotted with an α -c-myc anitbody with HRP conjugate and detected with ECL Plus reagent (Amersham). (*B*) SDS-PAGE analysis of ChIA and ChIA K86A proteins after affinity purification with an α -FLAG agarose resin. (Molecular weight standards are approximate due to lot-specific variation in the prestained standards.)

Fig. S2. HPLC-UV analysis of in vitro THPH halogenation reactions containing purified ChIA (red) or lacking ChIA (blue). A peak coeluting with authentic CI-THPH showed $\lambda_{max} = 286$ nm (standard $\lambda_{max} = 287$ nm). Spectral differences below 250 nm are attributable to the organic phase of HPLC eluent.

Fig. S3. ChIA-mediated formation of CI-THPH from THPH follows a roughly linear time course. y axis displays counts of CI-THPH from LCMS analysis.

Fig. S4. $36CI^-$ radio-TLC analysis of DIF-1 production in vivo. DIF-1 is detectable in the parental strain Ax2 (lane 1), but not st/B^- or ch/A^- strains (lane 2–4). Codevelopment of st/B^- and ch/A^- strains restores DIF-1 production (lanes 5–6). Addition of THPH to substratum restores DIF-1 production in the st/B^- strain (lane 7), but not in the ch/A^- strains (lane 8–9) indicating that unintentional disruption of st/B or its promoter is not responsible for the lack of DIF-1 in ch/A^- strains.

Fig. S5. Slug morphologies of wildtype (Ax2), mutant and complemented strains. The elongated, fragile slugs (arrows) characteristic of DIF-less development and observed in the *chlA*⁻ mutant are complemented by development in the presence of Cl₂-THPH or by expression of ChlA, but not by expression of ChlA K86A.