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Supplementary Figure 1.  DGG reduces the effects of both desensitization and 

saturation in parallel. 

A. Open probability of modelled AMPARs in response to pulses of glutamate (200 or 

500 mM) in the presence of DGG (0, 1, 2, 5, or 10 mM).  The dashed line in each pair of 

traces is at 40% of the peak for the 500 mM glutamate pulse, which is the linear 

prediction for a 200 mM glutamate pulse.  The linear prediction was achieved with 5 and 

10 mM DGG (right traces). 

B. Responses of modelled AMPARs to pairs of 500 mM glutamate pulses in different 

concentrations of DGG.  The response to the second pulse is nearly equal to the first in 10 

mM DGG, indicating that desensitization has been prevented. 

C. DGG at high concentrations causes AMPARs to report glutamate concentration in a 

linear fashion. Simulations similar to part A are normalized to the response to a 1 M 

glutamate pulse. Solid lines track the peak open probability (P1) as a function of 

glutamate pulse amplitude. Each line is in a different DGG concentration (from 0 to 10 

mM).  In 0 DGG, the response is highly saturated, with large changes in P1 up to 200 mM 

glutamate, but smaller changes above that. With increasing DGG, the response becomes 

closer to linear (dashed line).  The arrow indicates the data that are plotted in the dashed 

line of panel E. 

D. Block of the AMPAR response by DGG.  Solid lines track P1, as a function of DGG 

concentration. Each line is a different glutamate pulse amplitude (from 0.1 to 1 M).  

Block was normalized to P1 in 0 DGG.  Markers show experimental data from Fig. 3 for 

the effects of DGG on endbulb EPSCs (solid squares), indicating that the 500 mM 

glutamate pulse most closely mimics the behavior of the endbulb.  Because this model 

was not based on endbulbs, we do not claim that 500 mM is the actual glutamate 

concentration at the endbulb. However, pulses of 500 mM glutamate within this model 

provide a useful point for qualitative comparison with endbulb EPSCs. The relative block 

by 1 mM kynurenate (open circle) is included for comparison. 

E. DGG affects both desensitization and saturation to similar extents at each 

concentration. To represent desensitization (solid line), we normalized the open 

probability resulting from the second pulse of glutamate (P2) relative to P1 for pairs of 

500 mM glutamate pulses (panel B). This differs from the paired-pulse ratio for synaptic 
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stimulation, because here the glutamate pulses are equal. To represent saturation (dashed 

line) we normalized P1 for a 500 mM pulse of glutamate to the peak P1 for a 1 M pulse.  

A normalized value of 0.5 represents a linear response, and saturated responses should 

approach 1. These data are also indicated by the arrow in panel C.  The axis is flipped to 

facilitate comparison with the effects of DGG on desensitization. This plot demonstrates 

that the two effects of DGG on saturation and desensitization take place in parallel and 

cannot be simply separated, for example by choosing different concentrations of DGG. 

 

Modelling: The glutamate transient was modelled as diffusion of a disk of glutamate at 

the point of release, given by the equation ܥሺݐሻ ൌ ଴ܥ ቂ1 െ exp ቀെ ఘమ

ସௗ௧
ቁቃ, where C0 is the 

starting concentration, ρ is the vesicle radius (25 nm), d is the diffusion constant (0.4 

µm2/ms). Parameters for the AMPAR model are detailed in (Wadiche and Jahr 2001). 

Although this model was based on Purkinje cell AMPARs, we used it because it 

incorporated kinetic parameters related to DGG binding, and would therefore provide 

insight into the effects of DGG on saturation and desensitization. Simulations were done 

by Euler integration with a step size of 0.2 µs using Wavemetrics Igor. 

 

Supplementary Figure 2. Effect of CTZ on PPR in the presence of NBQX. 

CTZ was applied in the presence of NBQX, and PPR at different Δt values were 

compared. A: Example EPSC traces in NBQX (upper panel) and in NBQX + CTZ 

(middle panel). The lower panel shows NBQX and NBQX + CTZ traces scaled to the 

amplitude of EPSC1. B: Average results for 9 endbulbs. The insets expand the intervals 

Δt = 3 to 100 ms. C: The ΔPPR is shown. Filled markers indicate intervals that are 

significantly above 0 (P < 0.05). 

 

Supplementary Figure 3. Effect of DGG on PPR in the presence of NBQX. 

DGG was applied in the presence of NBQX, and PPR at different Δt values were 

compared. A: Example EPSC traces in NBQX (upper panel) and in NBQX + DGG 

(middle panel). The lower panel shows NBQX and NBQX + DGG traces scaled to the 

amplitude of EPSC1. B: Average results for 7 endbulbs. The insets expand the intervals 
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Δt = 3 to 100 ms. C: The ΔPPR is shown. Filled markers indicate intervals that differ 

significantly from 0 (P < 0.05).  

 

Supplementary Fig. 4. Mean-variance analysis. We estimated the probability of release 

using mean-variance analysis (Silver 2003). To summarize the approach, the EPSC mean 

(μ) and variance (σ2) are measured under various conditions, and the results are plotted.  

Under the binomial model of release, μ = NPq, and σ2 = NP(1 – P)q2, where q is the 

quantal size, N is related to the number of released vesicles, and P is the probability of 

release. Thus, the variance is 0 when P = 0 and P = 1, and it reaches a maximum when P 

= 0.5. When P is varied by changing Cae, substituting yields the relationship: σ2 = qμ – 

μ2/N. Thus a fit to the observed mean and variance directly yields N and q, and P can 

then be calculated for different μ. When saturation is high, N and P better reflect the 

behavior of release sites, whereas when saturation is low, these better reflect the number 

of releasable vesicles (Nv) and the probability of vesicle release (Foster and Regehr 

2004). This approach has been applied to the endbulb to examine the behavior of release 

sites (Oleskevich et al. 2000)(Wang & Manis 2005). 

 We found similar effects on the mean and variance when we varied Cae for 11 

cells in the absence of DGG (open symbols). To better compare between experiments, we 

normalized the mean and variance to the values in 3 Cae and averaged data together for 

each Cae. Each point is the average of 4 to 11 experiments. A fit to these data yielded an 

estimate of P for a release site of 0.57 in 2 Cae, which is similar to previous estimates. 

 To estimate the probability of vesicle release, we applied this approach to the 

results of similar experiments conducted in the presence of DGG (closed symbols). Each 

point is the average of 4 to 9 cells. We found that the variance only increased with Cae, 

and did not decrease in any of the 9 experiments. This means that it is not possible to fit 

the data using the relationship described above. However, we can use the fact that the 

variance reaches a maximum when P = 0.5 to conclude, at least, that P in 3 Cae < 0.5. We 

use this to place upper bounds on P in different Cae, as described in the Discussion. 
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Supplementary Fig. 5. Single vs. multivesicular release under the binomial model. To 

evaluate whether the changes in block by DGG at very low Cae are explainable by 

changes in the amount of multivesicular vs. single vesicle release, we used the binomial 

model of release. The percentage of neurotransmitter-releasing sites that only release a 

single vesicle is given by the relationship: 

%single = 100% × p1/∑ pk
Nv
k=1  

 = 100% × p1/(1 – p0) 

 = 100% × NvP (1 – P)Nv – 1/ [1 – (1 – P) Nv], 

where pk is the binomial probability of releasing k vesicles, P is the probability of vesicle 

release, and Nv is the number of releasable vesicles at a given site.  This quantity should 

be related to the effectiveness of DGG: DGG should block more effectively when %single 

is high than when %single is low. 

 The figure shows this equation evaluated over a range of P and Nv. The vertical 

grid marks indicate the upper-bound estimates we have made on P for the different Cae 

conditions (see Supp. Fig. 3 and Discussion). This figure shows that %single is 

significantly less than 100% (i.e. there is considerable multivesicular release) even when 

P is low. Furthermore, %single changes significantly as P increases. This means that DGG 

should show measurably different effects at different, low Cae. This is fully consistent 

with our observations in Fig. 3. 

 


