
Supplementary material

1 Details of parameter estimation

1.1 E-step

Set {ys,t}N
1 = (ys,t1 , ys,t1+1, · · · ,ys,t2) for t1 < t2. Here, we assume that xs,0 = 0, s = 1, · · · , S. In

the E-step, we calculate the conditional expectation of the joint log-likelihood given the guesses for the
parameters as:

E
{
log Pr

({xs,t}, {ys,t}|A, {bs}, C, σ2)
}

=− 1
2σ2

S∑
s=1

T∑
t=1

(
y′s,tys,t − 2y′s,tCx̄s,t + Tr

(
C ′CPs,t

))

− 1
2

(
Tr

(
R1

)− 2Tr
(
Ψ′R2

)
+ Tr

(
Ψ′ΨR3

))

− NST

2
log σ2 − KST

2
log τ2,

where
x̄s,t = E

[
xs,t

∣∣{ys,t}T
1

]
,

Ps,t = E
[
xs,tx

′
s,t

∣∣{ys,t}T
1

]
,

Ps,t,t−1 = E
[
xs,tx

′
s,t−1

∣∣{ys,t}T
1

]
,

Ψ =
[
A b1 · · · bS

0 I

]
,

R1 =




∑S
s=1

∑T
t=1 Ps,t

∑T
t=1 x̄1,t · · ·

∑T
t=1 x̄S,t∑T

t=1 x̄′1,t
...∑T

t=1 x̄′S,t

T × I




.

R2 =




∑S
s=1

∑T
t=1 Ps,t,t−1

∑T
t=1 x̄1,t · · ·

∑T
t=1 x̄S,t∑T

t=1 x̄′1,t−1
...∑T

t=1 x̄′S,t−1

T × I




,

R3 =




∑S
s=1

∑T
t=1 Ps,t−1

∑T
t=1 x̄1,t−1 · · ·∑T

t=1 x̄S,t−1∑T
t=1 x̄′1,t−1

...∑T
t=1 x̄′S,t−1

T × I




,

{x̄s,t}, {Ps,t} and {Ps,t,t−1} can be obtained by performing Kalman Filter algorithm. Since our model
is slightly different from usual state space models, we derived the Kalman Filter algorithm for our model.

Set x̄s,t|t∗ = E
[
xs,t

∣∣{ys,t}t∗
1

]
, and Vs,t|t∗ = Var

[
xs,t

∣∣{ys,t}t∗
1

]
. The forward recursions is as follows:

xs,t|t−1 = Axs,t−1|t−1 + bs

Vs,t|t−1 = AVs,t−1|t−1A
′ + τ2I

xs,t|t = xs,t|t−1 + Ks,t(ys,t − Cxs,t|t−1)
Vs,t|t = (I −Ks,tC)Vs,t|t−1

Ks,t = Vs,t|t−1C
′(σ2I + CVs,t|t−1C

′)−1,

1

Then, x̄s,t = xs,t|T and Ps,t = Vs,t|T + xs,t|T x′s,t|T can be obtained via the backward recursion

Js,t−1 = Vs,t−1|t−1A
′V −1

s,t−1|t−1

xs,t−1|T = xs,t−1|t−1 + Js,t−1(xs,t|T − xs,t|t−1)

Vs,t−1|T = Vs,t−1|t−1Js,t−1(Vs,t|T − Vs,t−1|T)J−1
s,t−1.

Furthermore, Ps,t,t−1 = Vs,t,t−1|T + xs,t|T x′s,t−1|T can be calculated by the recursion

Vs,t−1,t−2|T = Vs,t−1|t−1J
′
s,t−2 + Js,t−1(Vs,t,t−1|T −AVs,t−1|t−1)J ′s,t−2,

where Vs,T,T−1|T = (I −Ks,T C)AVs,T−1|T−1.

1.2 M-step

In the M-step, each of parameters is re-estimated by maximizing the conditional likelihood obtained in
the E-step. The results are as follows:

• C

The term of the expected likelihood relevant to C or d can be rewritten as:

N∑
n=1

(
c′nP̄cn − 2φ′ncn

)
,

where P̄ =
∑S

s=1

∑T
t=1 Ps,t, φn =

∑S
s=1

∑T
t=1 yn,s,tx̄s,t and c′n is the n-th row of C. Therefore,

each cn is updated as Algorithm 1.

• A, b

The term relevant to A or b can be rewritten as:

K+S∑

k=1

ψkR3ψ
′
k − 2

K+S∑

k=1

rkψ′
k + λτ2

K∑

k=1

K+S∑

i=1

χ(ψ 6= 0),

where ψk = (ψk,1, · · · , ψk,K+S) is the k-th row of Ψ and R2 = [r1, · · · , rK+S]′. Therefore, each ψk

each ψk is updated as Algorithm 2.

• σ2, τ2

Taking the corresponding partial derivative of the expected log-likelihood, σ2 is estimated as:

σ̂2 ⇐
∑S

s=1

∑T
t=1

(
y′s,tys,t − 2y′s,tCx̄s,t + Tr

(
C ′CPs,t

))

NST
.

Similarly, τ2 is estimated as:

τ̂2 ⇐

(
Tr

(
R1

)− 2Tr
(
Ψ′R2

)
+ Tr

(
Ψ′ΨR3

))

KS(T − 1)
.

Algorithm 1 Update cn

for n = 1 to N do
k∗ = arg maxk=1,··· ,K

(
p̄k,k − 2φn,k

)
(P̄ = {p̄i,j}, φn = (φn,1, · · · , φn,K)′)

cn = 1k∗ (1k∗ is indicator vector whose k∗-th value is 1 and the others are zero)
end for
return cn

2

Algorithm 2 Update ψ (In the following, we omit indices k of ψk, rk for simplicity)

v∗ ⇐ 1
2ψ′R3ψk − r′ψ + 1

2λτ2
∑K+S

k=1 χ(ψk 6= 0) // Calculating the present value of objective function
K = {}
ζ ⇐ arg min

(
1
2ξ′R3ξ − r′ξ

)

v ⇐
(

1
2ζ′R3ζ − r′ζ

)

for n = 1 to 2K do
k̃ ⇐ mod(rand,K) + 1 // Draw a number at random from 1 to K
if k̃ /∈ K then
K̃ ⇐ K ∪ {k̃}
ζ̃ ⇐ arg minζk=0,k∈K̃

(
1
2ξ′R3ξ − r′ξ

)

ṽ ⇐
(

1
2 ζ̃′R3ζ̃ − r′ζ̃ + 1

2λτ2|K̃|
)

if ṽ < v then
v ⇐ ṽ
ζ ⇐ ζ̃
K ⇐ K̃ // |K̃| is cardinality of K̃

end if
end if

end for
if v < v∗ then

ψ ⇐ ζ
end if
return ψ

2 Details of split-merge procedure

Let Fit(k), k = 1, · · · ,K denote the degree of fitness of cluster k as

Fit(k) =
∑

n;cn,k=1

S∑
s=1

T∑
t=1

(yn,s,t − xk,s,t − bk,s)2,

and let Fit(k, l), k 6= l denote the expected degree of fitness of the clusters k, l.

Fit(k, l) =

∑
n;cn,k+cn,l=1

S∑
s=1

T∑
t=1

(
yn,s,t − Nkxk,s,t + Nlxl,s,t

Nk + Nl
− Nkbk,s + Nlbl,s

Nk + Nl

)2

,

where Nk is the number of elements in cluster k. We use Fit(k) and

dFit(k, l) = Fit(k, l)− Fit(k)− Fit(l)

as criteria for splitting and merging, respectively. dFit(k, l) is a estimation of the degree of increased
fitness when the clusters k, l are merged. First, we select Jm merge candidates in decreasing order of
dFit(k, l), Then, for Jm merge candidates, we select Js split candidates in decreasing order of Fit(k)
excluding that merge candidate. Then combining these sorted candidates, we obtain an ordered split-
merge candidates. Split into two clusters is done based on the first eigenvector of the variance-covariance
matrix of the elements in the cluster to be splitted. The whole procedure is as follows:

1. Estimate parameters from some initial value until convergence. Let Θ∗, L∗ denote the estimated
parameters and the corresponding loss function.

2. For resulting Θ∗, obtain the split-merge candidates via the above criteria.

3. For each split-merge candidates, perform split-merge operation, and optimize the loss function until
convergence. Let Θ∗∗, L∗∗ denote the estimated parameters and the corresponding loss function.
If L∗∗ is larger than L∗, then set L∗ ← L∗∗, Θ∗ ← Θ∗∗ and go to step 2. If no L∗∗ exceeds L∗,
return Θ∗ as the result.

3

Table 1: The number of misspecification out of 50 trials

S 1 2 4
misspecification 8 0 0

3 Numerical experiments on the determination of the number
of clusters

We examined whether the proposed method can choose the true number (4 in this data) for 50 trial,
changing the number of stimuli S over 1, 2, 4. The result, which is shown in Table 1, shows that our
method works well, especially when the number of stimulus is large.

4

