
Disruption of RNA metabolism in Neurological Disorders  
 
 A number of genes that play important roles in RNA metabolism have been implicated in neurological 
disorders. These are summarized in the table below. The 3’ UTR CTG/CCTG expansions that occur in 
myotonic dystrophy cause mRNA to accumulate in foci which then sequester factors important for the correct 
adult splicing pattern of various genes such as the Muscle Chloride Channel.1,2 Dominant Retinitis Pigmentosa 
(RP) can be caused by mutations in the ubiquitously expressed proteins (PRPF31, PRPF8 and HPRP3) that 
are essential for the correct assembly and function of the U4,U5 andU6 tri-snRNP in pre-mRNA splicing.2,3 In 
retinal cell cultures mutant PRPF31 alters the efficiency of intron 3 removal from rhodopsin pre-mRNA, 
reducing rhodopsin and resulting in cell death.4 In Prader-Willi syndrome loss of HB11-52, a small nucleolar 
RNA (snoRNA), alters the alternative splicing of the Serotonin 2C Receptor.2,5  Recently mutations in TAR 
DNA-binding protein 43 (TDP-43) and fused in sarcoma/translated in liposarcoma (FUS/TLS), RNA binding 
proteins important for splicing of certain genes,6-9 have been reported to cause ALS.10-13  There is therefore a 
precedent for mutations in essential genes involved in pre-mRNA splicing resulting in degeneration of specific 
groups of neurons. There can often also be unexpected links between the genes mutated in a particular 
disease and RNA metabolism. The gene mutated in X-linked SMA has been identified as ubiquitin activating 
enzyme (UBE1).14  Thus it might appear that this disease results from the disruption of a separate cellular 
pathway from the SMN and splicing pathway that causes proximal SMA. However altering ubiquitination 
reduces the level of U4/U6-U5 snRNP,15 a critical component of the spliceosome, and thus splicing could be 
altered in this disorder. 
 As can be seen in the table below, not all mutations in RNA metabolism act through splicing. Senataxin 
mutations give rise to motor neuron disease or ataxia16 and mutations in immunoglobulin μ�binding protein 2 
(IGHMBP2) give rise to distal SMA.17  Both proteins contain a similar RNA helicase domain and both are 
involved in tRNA and rRNA biogensis.18,19  Mutations in glycyl-t-RNA synthetase and tyrosyl-t-RNA synthetase 
cause the peripheral neuropathy CMT.20,21  In mice loss of function alleles for these two genes does not mimic 
the peripheral neuropathy rather missense mutation that disrupt a particular property of tRNA-synthetase 
cause CMT. Interestingly the products of these mutant alleles are unable to localize to the distal axon in the 
same way that the wild-type protein does.22,23 It is possible that this causes a deficiency of the enzyme at that 
site and, thus, CMT.  In SMA it seems possible that either an alteration in the splicing of certain genes or in the 
localization of mRNA could be critical to the development of the phenotype.  An understanding of how reduced 
SMN causes SMA may have a wider impact on our understanding of how mutations in genes important for 
RNA metabolism cause neurogenetic disease.  
 
Supplementary table 1  RNA metabolism and neurological disease  

Disease  Molecular Defect   Consequence                Ref 

 

DM1, DM2  CUG/CCUG expansion in 3’ UTR Altered Splicing  1,2      

   RNA binds splicing factors    

 

FXS   CGG expansion in 5’UTR  Altered Translation     24 

reduced FRAX expression  

 

SCA8    CUG expansion in 3’UTR  ? Altered splicing   25 

  

HDL2   CTG expansion in alternate  ? Altered splicing   26 

   RNA binds splicing factors 

 

OPMD   GCG expansion in PAPBN1  Polyadenylation  27 

    



POMA   Autoantibodies to Nova 1  Altered splicing  28 

 

Hu syn   Autoantibodies to Hu proteins mRNA stability, export 29 

        

MRS   Mutations in UPF3B   Nonsense mediated decay 30 

 

PWS   Loss of SNURF expression  Altered splicing     5 

        (Serotonin receptor) 

 

RP   Mutations in PRPF31,8,3  ? Altered splicing  3,4 

        Rodopsin 

 

LAAHD/  Mutations in GLE1    Altered transport of  31 

LCCS        mRNA from nucleus  

 

ALS    Mutations in SOD1   ?  unknown   32 

 

ALS   Mutations in TDP43   ? altered splicing     8,10,11 

 

ALS   Mutations in FUS/TLS   ? altered splicing  12,13 

 

DSMA   Mutations in IGHMBP2  ?altered translation     17,18 

 

CMT   tRNA synthetase    ? Axon problem  20-23 

 

SMA Loss of SMN1, retention SMN2 ? altered splicing/RNA     33 

                                                                                                  transport  

 

Abbrevations: Diseases: DM Myotonic muscular dystrophy, FXS Fragile X syndrome, SCA spinocerebellar 
ataxia, HDL Huntington disease like, OMPD oculopharyngeal muscular dystrophy, POMA opsoclonus-
myoclonus ataxia, Hu syn Hu syndrome, MRS Mental retardation syndrome, PWS Prader-Willi syndrome, RP 
Retinitis pigmentosa, LAAHD Lethal arthrogryposis with anterior horn cell disease, LCCS Lethal congenital 
contracture syndrome,  ALS Amyotrophic Lateral Sclerosis,  DSMA distal spinal muscular atrophy, CMT 
Charcot-Marie-Tooth Disease, SMA spinal muscular atrophy, Genes: FRAX fragile X protein, PAPBN1 Poly(A) 
binding protein nuclear 1, Nova 1 neuro-oncological ventral antigen 1, UPF3B regulator of nonsense transcripts 
homolog B, SNURF SNRPN upstream reading frame–small nuclear ribonucleoprotein polypeptide N, PRPF 
31or 8 or 3 pre-mRNA processing factor 31 or 8 or 3,  GLE1 GLE1 mRNA export mediator homolog, SOD1 
Superoxide dismutase 1, TDP43 TAR DNA binding protein 43, FUS/TLS fused in sarcoma/translated in 
liposarcoma, IGHMBP2 immunoglobulin mu binding protein 2, SMN survival motor neuron.  Table adapted 
from Lukong et al.34 
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