Operator	Performance	Beacon sensitivity and specificity (%)						
oporator	- enemanee	А	В	С	D	E	Overall	
4	Sensitivity	100	93	100	85	5	59	
1	Specificity	100	100	100	100	100	100	
2	Sensitivity	100	93	50	90	0	57	
2	Specificity	100	99	100	100	100	98	
3	Sensitivity	0	87	50	85	14	63	
5	Specificity	100	98	100	100	100	98	
4	Sensitivity	100	100	100	90	67	93	
7	Specificity	80	68	81	74	78	52	

Table S1. Summary of beacon performance per operator by visual analysis

Light shade, beacon with poorest performance for each operator

Beacon	Affected codon ^ª	Codon change ^b	Amino acid change ^b	Colombia (n=29) ^c	Texas- Mexico border (n=22) ^c	
	428	AGC → A <u>G</u> G	Ser \rightarrow Arg	1 (3%)	0 (0%)	
А	429	$CAG \rightarrow CA\underline{C}$	$Gln \rightarrow His$	0 (0%)	1 (5%)	
	430	CTG → <u>A</u> TG	Leu → Met	1 (3%)	0 (0%)	
	433	$TTC \rightarrow TT\underline{\mathbf{T}}$	Phe → Phe ^d	0 (0%)	1 (5%)	
	435	GAC → <u>T</u> AC	Asp → Tyr	1 (3%)	1 (5%)	
В	435	GAC → G <u>T</u> C	Asp → Val	5 (14%)	2 (10%)	
D	435	GAC → G <u>G</u> C	Asp → Gly	0 (0%)	1 (5%)	
	435	GAC → GA <u>G</u>	Asp → Glu	0 (0%)	1 (5%)	
	435-436	<u>ΔGAC CAG</u>	ΔAspGIn	0 (0%)	1 (5%)	
C	441	TCG → <u>A</u> CG	Ser \rightarrow Thr	2 (6%)	0 (0%)	
С	441	TCG → T <u>TC</u>	Ser \rightarrow Phe	2 (6%)	0 (0%)	
	445	$CAC \rightarrow \underline{T}AC$	His → Tyr	2 (6%)	1 (5%)	
D	445	$CAC \rightarrow \underline{A}AC$	His → Asn	1 (3%)	1 (5%)	
D	445	$CAC \rightarrow \underline{G}AC$	His → Asp	2 (6%)	6 (29%)	
	445	CAC → C <u>G</u> C	His → Arg	0 (0%)	4 (19%)	
	447	CGC → CG <u>T</u>	$Arg \rightarrow Arg^{d}$	2 (6%)	0 (0%)	
	450	TCG → T <u>T</u> G	Ser → Leu	18 (49%)	1 (5%)	
F	450	TCG → T <u>G</u> G	Ser → Trp	1 (3%)	0 (0%)	
Е	450	TCG → T <u>AC</u>	Ser → Tyr	0 (0%)	1 (5%)	
	450	TCG → <u>C</u> GC	Ser → Arg	0 (0%)	1 (5%)	

Table S2. Distribution of mutations and corresponding amino acid changes within the 81-

bp region of *rpoB* in drug-resistant isolates from Colombia and the Texas-Mexico border

^a Codon number based on *M. tuberculosis rpoB* (accession no. AE000516, nucleotides 761762-765298) with changed nucleotide shown in underlined bold; codon 447 was not covered by the beacons used in this study (shaded); ^b arrows indicate change from wild-type to mutant; ; ^cdata expressed as n(column %); ^dsilent mutations

Table S3. Quantification potential of beacon qPCR using known proportions of DNA

DNA mix	Expe	cted	No. targets	Observed		
wildtype + mutant	Wild-type	Mutant	 detected in 	Wild-type	Mutant	
for beacon B	(%)	(%)	beacon B	(%)	(%)	
1000 + 0	100	0	726	100	0	
700 + 300	70	30	538	74	26	
500 + 500	50	50	312	43	57	
300 + 700	30	70	253	35	65	
100 + 900	10	90	45	6	94	
1 + 999	1	99	0	0	100	
0 + 1000	0	100	0	0	100	

from wild-type and mutant bacteria for beacon B^a

^a Different ratios of DNA from a strain with no detectable Ct for beacon B (assumed 100% mutations) and DNA from another strain with a Ct suggesting no mutations in 100% of the bacteria were mixed in different proportions in the laboratory to evaluate the quantification potential of beacon qPCR. A total of 103 genomes were added per qPCR reaction for these experimental specimens, in parallel with a standard curve for beacon B which contained known amounts of wild-type DNA target as reference. The number of targets detected by beacon B is shown (# targets detected in beacon B), and percentage of mutants versus wild-type was estimated using as a reference the number of targets detected for beacon B when no mutations were added (1000 wild-type genomes, 726 targets).

	Beacon A		Bead	on B	B Beacon C		Beacon D		Beacon E		Beacon 16S rRNA	
А	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
В	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2
С	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3
D	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4
Е	S5	S5	S5	S5	S5	S5	S5	S5	S5	S5	S5	S5
F	S6	S6	S6	S6	S6	S6	S6	S6	S6	S6	S6	S6
G	CDC1551	CDC1551	CDC1551	CDC1551	CDC1551	CDC1551	CDC1551	CDC1551	CDC1551	CDC1551	CDC1551	CDC1551
Н	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC
	1	2	3	4	5	6	7	8	9	10	11	12

Fig S1. 96-well plate design. Every plate was loaded with six experimental strains (S1-S6; rows A thru F), a wild-type reference strain (CDC1551; row G), and a non-template control (NTC; row H). Beacons A – E for *rpoB* (columns 1 thru 10) and 16S rRNA for *M. tuberculosis* species confirmation (columns 11-12) were run in duplicates for each strain.

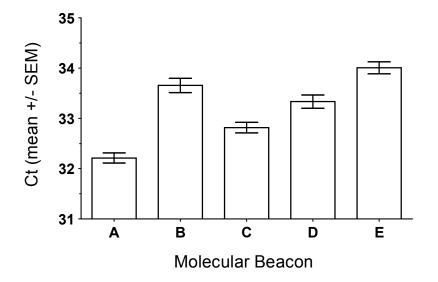


Fig S2. Efficiency, distribution and reproducibility of beacons A-E for strain CDC1551 for the 18 96-well plates ran in this study. Beacon A had a consistently lower raw Ct (mean±SEM; 32.2±0.10), followed by C (32.8±0.10), D (33.3±0.13), B (33.7±0.14) and E (34.0±0.12).