
1

Supplementary Text� for “Simultaneous clustering of multiple
gene expression and physical interaction datasets”
Manikandan Narayanan1,a,∗, Adrian Vetta2, Eric E. Schadt1,b, Jun Zhu1,c,∗

1 Department of Genetics, Rosetta Inpharmatics (Merck), Seattle, WA, USA
2 Department of Mathematics and Statistics, and School of Computer Science, McGill University,
Montreal, QC, Canada
∗ E-mail: manikandan narayanan@merck.com (MN), junzhu 99@yahoo.com (JZ)

a Current address: Merck Research Labs, Boston, MA, USA

b Current address: Pacific Biosciences, Menlo Park, CA, USA

c Current address: Sage Bionetworks, Seattle, WA, USA
� Referred to as (Supplementary) Text S1 in the main text.

1 Supplementary Methods

1.1 Algorithm Analysis

The proof of the theorem on JointCluster algorithm is organized in two parts: the first collects claims
about the cuts made by the algorithm, and the second uses them to prove the theorem. Please refer the
main text for the algorithm description, theorem statement, and relevant definitions.

Claims and notations. Let the cuts produced by the algorithm be (S1, T1), (S2, T2), . . ., and let the
type of a cut (Sj , Tj) be the label τj ∈ {1, 2, . . . , p} of the graph that produced it. That is, (Sj , Tj) is the
smallest of the chosen cuts in the algorithm description above, and approximates the sparsest cut in the
current node set in Gτj

. For convenience, let Sj be the “smaller” side of the cut (i.e., aτj
(Sj) ≤ aτj

(Tj)).
Slightly modify the algorithm just for the sake of analysis so that at any point, the current node set
Sj ∪Tj satisfying aτj

(Sj ∪Tj) < ε
naτj

(V) is split into singletons. The conductance of singletons is defined
to be 1.

Let a partition C1, C2, . . . , Cl of V be an ({αi}, ε) simultaneous clustering. We need to show that the
partition defined by the algorithm’s cuts approximates this optimal clustering. To this end, note that the
inter-cluster edges X of the algorithm’s partition is simply the edges crossing all cuts {(Sj , Tj)}. To bound
the cost of edges lost in some (Sj , Tj), we define a new cluster-avoiding cut (S′

j , T
′
j) in Sj∪Tj as follows. For

each cluster Ct in the optimal clustering, place all of (Sj∪Tj)∩Ct either into S′
j if aτj (Sj∩Ct) ≥ aτj (Tj∩

Ct), or into T ′
j otherwise. By this construction, |aτj (Sj)−aτj (S

′
j)| ≤

∑l
t=1 min(aτj (Sj∩Ct), aτj (Tj∩Ct)).

We now present two claims that will help us bound the edges lost in the algorithm’s cuts in the next
section. These claims are simple extensions of the single graph case [1], but proved here for completeness.
The first claim is on the maximum number of Sj or S′

j sets a node can belong to.

Claim 1. Consider any graph Gi. For each node u ∈ V , there are at most log n
ε values of j such that

τj = i and u belongs to Sj. Further, there are at most 2 log n
ε values of j such that τj = i and u belongs

to S′
j.

Proof of Claim 1. Fix a node u ∈ V . Let

Iu = {j : u ∈ Sj , τj = i}, Ju = {j : u ∈ S′
j \ Sj , τj = i} .

Clearly if u ∈ Sj ∩ Sk with j < k, then (Sk, Tk) must be a partition of Sj or a subset of Sj . Also, if
the cut types τj = τk = i, we have ai(Sk) ≤ 1

2ai(Sk ∪ Tk) ≤ 1
2ai(Sj). So ai(Sj) reduces by a factor of 2

or greater between two successive times j ∈ Iu. The maximum value of ai(Sj) is at most ai(V) and the
minimum value is at least ε

nai(V), yielding the first statement of the claim.

2

Now suppose j, k ∈ Ju with j < k. Suppose also u ∈ Ct. Then u ∈ Tj ∩ Ct, and Tj or a subset of Tj

is later partitioned into (Sk, Tk). Since u ∈ S′
k \ Sk with τk = i, we also have ai(Tk ∩ Ct) ≤ ai(Sk ∩ Ct).

Thus ai(Tk∩Ct) ≤ 1
2ai((Sk∪Tk)∩Ct) ≤ 1

2ai(Tj ∩Ct). This halving of ai(Tj ∩Ct) between two successive
times that j ∈ Ju shows that |Ju| ≤ log n

ε . This proves the second statement in the claim as u ∈ S′
j when

u ∈ Sj or u ∈ S′
j \ Sj .

The second claim considers a set Ct in the optimal partition, and uses its high conductance (of at least
αi in Gi) to show that another conductance-like measure defined using intra-cluster cut edges (within
Ct) is high as well.

Claim 2. Consider any graph Gi. For each cluster Ct in the optimal clustering, which has conductance
at least αi in Gi, we have∑

j

ai(Sj ∩ Ct, Tj ∩ Ct) ≥
αi

log n
ε

∑
j

min(ai(Sj ∩ Ct), ai(Tj ∩ Ct)) .

Proof of Claim 2. Consider how the cuts (S1, T1), (S2, T2), . . . induce a partition of Ct into P1, P2,
Every edge between two vertices in Ct that belong to different sets of the partition must be cut by some
cut (Sj , Tj), and conversely, every edge of every cut (Sj ∩ Ct, Tj ∩ Ct) must have its two end points in
different sets of the partition. So given that Ct has conductance αi, we obtain∑

all j

ai(Sj ∩ Ct, Tj ∩ Ct) =
1
2

∑
all s

ai(Ps, Ct \ Ps)

≥ αi

∑
s

min(ai(Ps), ai(Ct \ Ps)) .

Each node u ∈ Ct belongs to the smaller (with respect to ai(·)) of the two sets Sj ∩ Ct, Tj ∩ Ct for at
most log n

ε values of j. Also every Ps contained in (and which partition) the smaller of Sj ∩ Ct, Tj ∩ Ct

is smaller than Ct \ Ps. So we have∑
j

min(ai(Sj ∩ Ct), ai(Tj ∩ Ct)) ≤ log
n

ε

∑
s

min(ai(Ps), ai(Ct \ Ps)) .

The claim follows from these two bounds taken together.

Proof of algorithm guarantees. We now prove that the partition defined by the algorithm’s cuts
approximates the optimal clustering, which has conductance at least αi in Gi and inter-cluster edge cost
at most ε in the sum graph (V, as).
Proof of Theorem 2 in the main text. From the algorithm description, it follows that each cluster
output by our algorithm upon termination has conductance at least(

α∗i
K

)1/ν

=
(

ε αi

2K log n
ε

)1/ν

in Gi for all i.
Thus it remains to bound the weight of the inter-cluster edges. To do so, we divide the algorithm’s

cuts into two groups, and bound their edge weights separately. The first group H consists of cuts with
“high” conductance within clusters. Let aI

i(Sj , Tj) denote the weight of intra-cluster edges of the cut
(Sj , Tj); i.e., aI

i(Sj , Tj) =
∑l

t=1 ai(Sj ∩ Ct, Tj ∩ Ct). Then,

H =
{

j : aI
τj

(Sj , Tj) ≥ 2α∗τj

l∑
t=1

min(aτj (Sj ∩ Ct), aτj (Tj ∩ Ct))
}

.

3

The remaining cuts will be called as cuts with “low” conductance within clusters.
We now bound the cost of the high conductance group using the cost of the cluster-avoiding cuts.

Recall that a cluster-avoiding cut (S′
j , T

′
j) of a cut (Sj , Tj) satisfies |aτj (Sj)−aτj (S

′
j)| ≤

∑
t min(aτj (Sj ∩

Ct), aτj (Tj ∩ Ct)). Also for all j ∈ H, we have

α∗τj
aτj (Sj) ≥ aτj (Sj , Tj)

≥ aI
τj

(Sj , Tj)

≥ 2α∗τj

∑
t

min(aτj (Sj ∩ Ct), aτj (Tj ∩ Ct)).

Putting them together, we obtain |aτj
(Sj) − aτj

(S′
j)| ≤ 1

2aτj (Sj), and hence min(aτj (S
′
j), aτj (T

′
j)) ≥

1
2aτj (Sj). We now use the sparsest cut approximation guarantee to upper bound aτj (Sj , Tj) in terms of
aτj (S

′
j , T

′
j).

aτj
(Sj , Tj)

aτj
(Sj)

≤ K
(aτj (S

′
j , T

′
j)

min(aτj
(S′

j), aτj (T ′
j))

)ν

≤ K
(2 aτj

(S′
j , T

′
j)

aτj (Sj)

)ν

Hence we have bounded the overall cost of the high conductance cuts with respect to the cost of the
cluster-avoiding cuts. Observe that every edge in a cluster-avoiding cut is an inter-cluster edge in the
optimal clustering. Also note that if an edge (u, v) crosses a cut (S′

j , T
′
j), then either u ∈ S′

j or v ∈ S′
j .

So by applying Claim 1 for any i = 1, 2, . . . , p, each edge (u, v) crosses a cut (S′
j , T

′
j) of type τj = i for

at most 4 log n
ε values of j. Applying these observations along with Claim 1 and Holder’s inequality, we

bound the cost of the high conductance group cuts in the min graph (V, am).∑
j∈H

am(Sj , Tj) ≤
∑
j∈H

aτj (Sj , Tj)

≤
∑
j∈H

K
(
2aτj (S

′
j , T

′
j)
)ν

aτj (Sj)1−ν

≤ K

∑
j∈H

2aτj (S
′
j , T

′
j)

ν ∑
j∈H

aτj (Sj)

1−ν

≤ K

 p∑
i=1

∑
j:τj=i

2ai(S′
j , T

′
j)

ν  p∑
i=1

∑
j:τj=i

ai(Sj)

1−ν

≤ K

(
4ε log

n

ε

p∑
i=1

ai(V)

)ν (
log

n

ε

p∑
i=1

ai(V)

)1−ν

≤ 4Kεν log
n

ε
as(V)

Next we deal with the group of cuts with low conductance within clusters. Using the definition of H

4

and Claim 2, we can bound the intra-cluster cost of the low conductance group of cuts.∑
j /∈H

aI
m(Sj , Tj) ≤

∑
j /∈H

aI
τj

(Sj , Tj)

≤
∑
j /∈H

2α∗τj

l∑
t=1

min(aτj (Sj ∩ Ct), aτj (Tj ∩ Ct))

≤
p∑

i=1

2α∗i

l∑
t=1

∑
all j

min(ai(Sj ∩ Ct), ai(Tj ∩ Ct))

≤
p∑

i=1

2α∗i
∑

t

log n
ε

αi

∑
j

ai(Sj ∩ Ct, Tj ∩ Ct)

≤ ε

p∑
i=1

∑
j

aI
i(Sj , Tj)

≤ ε

p∑
i=1

ai(V)
2

= ε
as(V)

2

In addition, since each inter-cluster edge in the optimal clustering belongs to at most one cut (Sj , Tj), the
cost of such edges crossing the low-conductance group of cuts in the sum graph (and hence min graph)
is at most ε

2as(V). So the total cost of the low conductance group of cuts in the min graph is ε as(V).
To get the total edge cost in the min graph, we then sum up the cost of the two groups of cuts from

above, and note that splitting up all the Sj ∪ Tj with aτj
(Sj ∪ Tj) ≤ ε

naτj (V) into singletons costs us
at most ε

2 as(V) on the whole. Substituting as(V) as twice the total sum of edge weights gives the edge
cost bound in Theorem 2 in the main text.

1.2 JointCluster – Overall Framework

JointCluster performs a combined analysis of multiple graphs using a flexible framework comprising
two phases. The first phase produces a clustering tree using the JointCluster algorithm and heuristics
described in the main text, and the second phase parses this clustering tree to produce clusters preserved
in multiple graphs as described in this section. The algorithm parameters are also learnt automatically
as described here, so that we could jointly cluster multiple graphs in an unsupervised fashion.

Parsing the clustering tree. Our algorithm recursively partitions the common node set V of the
graphs. To capture this hierarchical structure, we use a clustering tree with the same structure as the
algorithm’s recursion call tree, and map the subset of V on which a recursive call is made to the corre-
sponding vertex in the tree. Adopting an empirically tested clustering framework [2], our JointCluster
method parses this clustering tree into a partition of V that both respects the clustering tree and optimizes
a certain objective function.

A partition of V is a collection of disjoint node sets C1, C2, . . . CT (Ct ⊆ V) whose union equals V .
A collection of disjoint node sets is said to respect a clustering tree if each node set is mappable to some
vertex in the clustering tree. Our objective function for a partition is based on the modularity score [3],
studied in other biological contexts [4], and described next.

We take the min–modularity score of a partition C, which is the sum of the min–modularity score of
the sets Ct in the partition, as our objective function. We compute the modularity score of Ct in each

5

graph Gi as below, and take their minimum as the min–modularity score of Ct. The modularity of a set
of nodes Ct in graph Gi is given by: Modularityi(Ct) =

(
ai(Ct, Ct)/ai(V)− (ai(Ct, V)/ai(V))2

)
. The

first term is the normalized edge density of the nodes in Gi and the second the expectation of the same
measure in a randomized graph obtained from degree-preserved shuffling of the edges in Gi.

The partition of V that respects the clustering tree and optimizes the min–modularity score can be
found by dynamic programming, much in the same way as done for the correlation clustering objective
function in [2]. For a given vertex in the clustering tree, let D ⊆ V be the nodes mapped to it, and Dl, Dr

be the nodes mapped to its left and right children respectively. If OPT (D) is the optimal partition of D,
then the dynamic programming recurrence is OPT (D) = arg max(min–modularity(D),min–modularity(OPT (Dl)∪
OPT (Dr))). To enable a fair comparison of JointCluster with other methods, we needed a size limit on
the clusters. To find a partition where each set or cluster in the partition is of some maximum size (set
at 100 nodes), we simply change the above recurrence to OPT (D) = OPT (Dl) ∪ OPT (Dr) whenever
|D| > 100. From the size-limited optimal partition of V found using this procedure, we only output
clusters of some minimum size (at least 10 nodes) as the final list of meaningful clusters. This list is
ordered by the min-modularity scores of clusters (highest score first), and the clusters are identified by
their rank in this ordering.

Parameter learning. In the problem definition, we saw how graph-specific conductance thresholds
{αi} accommodate the varying extents to which different graphs can be clustered. We desire an unsu-
pervised method for learning the related conductance threshold α∗i (see algorithm description) for each
network of interest Gi from the inherent cluster structure present in the network. To do so, we repeat
the following procedure separately for each graph Gi.

1. Separately cluster Gi using JointCluster with the conductance threshold set without loss of gen-
erality to the maximum possible value 1. The result is a fully-resolved clustering tree, where each
node in Gi is mapped to a leaf vertex in the tree.

2. Parse the clustering tree into a clustering with the optimal min-modularity score, which turns out
to be the modularity score as only one graph is clustered. This clustering yields a set of size-
constrained, meaningful clusters {Ct} as described above.

3. Set α∗i to the minimum conductance threshold that would result in the same set of clusters {Ct}
upon clustering Gi as the threshold of 1. This value is determined from the clustering tree by
selecting the tree vertices to which the clusters {Ct} are mapped to, and taking the maximum of
the conductance of all cuts made by the algorithm in resolving the clustering tree to the selected
vertices.

Note that when clustering multiple graphs, very stringent conductance thresholds might not yield any
(non-trivial) clusters, and very low conductance thresholds might only yield coarsely resolved clustering
trees and large clusters. The rationale behind the above heuristic is to automatically choose a threshold
that is both sufficiently low to enable simultaneous clustering with the scaling heuristic, and sufficiently
high to provide a clustering tree that is at least as resolved as the single-graph clustering trees.

Significance of modularity scores. The modularity score of a cluster in a network is said to be
statistically significant (or simply significant) if the P-value of the score is at most 1/100 as estimated
from random sets containing the same number of genes as the cluster. In detail, a random set of genes
of the same size as the cluster is chosen without replacement from all 4482 genes in the network, and
its modularity score calculated in the network. The P-value of a modularity score a is calculated by
the proportion of 100 random sets that achieve modularity score at least a. The P-value of the min-
modularity score of a cluster is similarly estimated from the min-modularity score of 100 random sets of

6

genes of the same size as the cluster, and the min-modularity score is said to be (statistically) significant
if the estimated P < 1/100. The P-value of the min-modularity score of a whole clustering is estimated
from the min-modularity score of 100 random partitions of all genes into random sets of genes, with each
random partition having the same number of clusters and cluster sizes as the whole clustering. Again, the
min-modularity score of a clustering is said to be (statistically) significant if the estimated P < 1/100.

Adapted scoring for protein-protein and protein-DNA networks. To obtain some of our results,
we decomposed the physical network into a network of protein-protein and a network of protein-DNA
interactions, and applied JointCluster to these two networks in place of the single physical network. The
clustering tree was produced and parsed as before, except for the use of a slightly adapted min-modularity
score whenever protein-protein and protein-DNA networks were involved. The adapted min-modularity
score of a cluster is the minimum of the best modularity score of the cluster in the protein-protein and
protein-DNA networks, and the modularity score of the cluster in other integrated networks if any. This
allowed us to find clusters that were present in the protein-protein network (as a protein complex for
instance) or in the protein-DNA network (as a coregulated module for instance).

1.3 Performance Comparison

Tested methods. We already described the tested methods (JointCluster, single tree, single graph and
Coassociation methods) in the main text. To complete the description, we provide details on implementing
the spectral clustering method M [2], and building the coassociation graph [5]. The spectral method M
was implemented by simply applying our JointCluster program on one input graph, since JointCluster
is an extension of the spectral method from one graph to multiple graphs. Clustering a graph using
this implementation of method M yields the clustering tree, and optionally the clusters that result from
parsing this tree using the modularity score described above. The coassociation graph is basically a
consensus of different clusterings (partitions) of the same set of nodes. The graph was defined over the
nodes being clustered, with an edge between two nodes u, v weighted by the number of clusterings in
which both u, v belong to the same cluster.

The implementation of Matisse and Co-clustering methods described in the main text was available as
a single software http://acgt.cs.tau.ac.il/matisse/. The same software was also used to estimate
missing expression values using the k-nearest neighbors option (with k = 10) before building the yeast
coexpression networks.

Simulated data for benchmarking. To generate one random instance of two test graphs G1, G2, we
proceeded as in an earlier study [4], by creating each graph over 128 nodes and implanting a fixed “true”
clustering of 4 clusters with 32 nodes each. Let the internal degree of a node v count the neighbors of
v that belong to the same cluster as v, and its external degree count the remaining neighbors of v. In
order to obtain a meaningful cluster structure, the edge probability between two nodes was set such that
the average external degree (the kout parameter) of every node is at most its average internal degree.
The sum of these two average degrees was fixed at a constant 16 as in the earlier study, so only the
values kout ≤ 8 lead to a meaningful cluster structure. In more detail, we classified edges as intra or inter
cluster, and set these edges independently with probability pi and po respectively. The pi and po values
were chosen such that the average internal degree 32pi and average external degree kout = 96po summed
up to 16 for different values of kout.

Reference classes. The biological significance of detected clusters were assessed using reference sets
of yeast genes belonging to different classes, as mentioned in the Results. We provide detail on how these
five reference classes were collected.

7

• GO Process: Genes in each reference set in this class are annotated either directly or indirectly
to the same GO Biological Process term, using any evidence code other than IEA (Inferred from
Electronic Annotation) [6] (Jan 2009 version). We restrict ourselves to sets of size at least 50 and
at most 1000 to avoid reference sets that are either too small or too large to provide a meaningful
enrichment category.

• TF (Transcription Factor) Perturbations: Genes in each set are differentially expressed at P-value
at most 0.01 between TF-perturbed and wildtype (or control) strains. The list of reference sets
from two studies, TF deletion [7] and TF over-expression [8], are concatenated to form this reference
class. The P-value for differential expression of a gene under a TF deletion or overexpression is
based respectively on the X-score or Z-score reported in the study.

• Compendium of Perturbations: Genes in each set are differentially expressed at P-value at most 0.05
and exhibit a fold change at least 1.5 between perturbed (deletions of genes, or chemical treatment)
and wildtype (or mock-treated control) yeast strains [9]. The P-values based on a gene-specific
error model and fold changes are as reported in the study.

• TF Binding Sites: Genes in a set have binding sites of the same TF in their upstream genomic
regions, with sites predictions downloaded from a previous study based on ChIP binding data [10]
at a binding P-value cutoff of 0.005 and cross-species conservation of site sequences determined
using a moderate criterion [11].

• eQTL Hotspots: The genomic regions with wide-spread transcriptional effects, i.e., exhibiting a
significant excess of linkages of expression-related traits to genotypic variations, are called eQTL
hotspot regions. The hotspot regions have been reported for three traits, gene expression under
glucose and ethanol conditions and difference between these two expressions, using linkages signifi-
cant at about 5% FDR [12]. Genes with trait linkages to such a eQTL hotspot region are grouped
into a reference set.

Besides the criteria described above, we discard from each class, reference sets that are too small (less than
5 genes) to provide a meaningful enrichment category. A reference set comprising differentially expressed
genes is referred to as a signature set or simply signature in the text (eg. deletion, overexpression or
perturbation signatures).

Evaluation measures. To evaluate the methods on clustering of the simulated datasets, we used the
standard Jaccard index measure, which ranges from 0 to 1, to reflect the degree of overlap between the
true clustering and the clustering detected by the methods. Jaccard Index between two clusterings of
the same set of elements is the ratio between the number of element pairs that are intra-cluster wrt
(with respect to) both clusterings and the number of element pairs that are intra-cluster wrt either of
the clusterings. Given a clustering (partition) of a set of elements into clusters, a pair of elements that
belong to a single cluster is denoted as intra-cluster wrt this clustering.

To evaluate the methods on clustering of the yeast networks, we measured the overlap between clusters
detected by the methods against sets in the various reference classes. The significance of overlap between
two sets of genes belonging to a larger background set (typically all the genes in the yeast networks) is
reported as an enrichment P-value computed using the hypergeometric distribution (denoted as P in the
text).

Sensitivity and specificity measure how well the clusters produced by a clustering method align with
reference sets of a specific class such as GO Process or TF Perturbations. Sensitivity is the fraction of
reference sets in the class that are enriched for genes belonging to some cluster output by the method.
Specificity is the fraction of clusters output by a method that are enriched for genes belonging to some
reference set in the class. Both fractions are reported in the tables as percentages rounded to the nearest
tenth. A cluster is said to be significantly enriched or simply enriched for genes belonging to some
reference set, if the enrichment P-value of overlap between the cluster and reference set genes, computed

8

as said above using all genes in the networks of interest as background, is at most 0.005 after Bonferroni
correction for the multiple reference sets being tested. The same method is used to declare a reference
set as being enriched for genes belonging to some cluster, but the Bonferroni correction is now using the
number of clusters being tested.

A set of genes is said to be recovered by a clustering method if it is enriched for genes belonging to
some cluster in the clustering found by the method, using the same definition of enrichment of a cluster
for a reference set described above.

2 Supplementary Data

2.1 JointCluster: Results on Yeast Datasets and Software

The genes in the three-network clusters obtained from applying JointCluster on the yeast physical and
glucose/ethanol coexpression networks is provided in an accompanying “pge_clusters.orf” file. The en-
richment of these clusters for all five reference classes is provided in an accompanying “pge_clusters_enrich.out”
file. The prediction of function for uncharacterized ORFs (Open Reading Frames) based on the GO Pro-
cess enrichment of these clusters is provided in an accompanying “pge_clusters_predns.out” file. The
accompanying files and JointCluster software are available at http://www.math.mcgill.ca/vetta/jc/ .

References

1. Kannan R, Vempala S, Vetta A (2000) On clusterings - good, bad and spectral. In: Proc Annu
IEEE Symp Foundations of Comput Sci (FOCS). pp. 367-377.

2. Cheng D, Vempala S, Kannan R, Wang G (2005) A divide-and-merge methodology for clustering.
In: Proc ACM Symp Princ of Database Syst (PODS). pp. 196-205.

3. Brandes U, Delling D, Gaertler M, Gorke R, Hoefer M, et al. (2008) On modularity clustering.
IEEE Trans Knowl Data Eng 20: 172–188.

4. Guimera R, Nunes Amaral LA (2005) Functional cartography of complex metabolic networks.
Nature 433: 895-900.

5. Topchy AP, Jain AK, Punch WF (2003) Combining multiple weak clusterings. In: Proc IEEE Int
Conf on Data Mining (ICDM). pp. 331-338.

6. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene Ontology: tool for the
unification of biology. Nat Genet 25: 25-29.

7. Hu Z, Killion PJ, Iyer VR (2007) Genetic reconstruction of a functional transcriptional regulatory
network. Nat Genet 39: 683-687.

8. Chua G, Morris QD, Sopko R, Robinson MD, Ryan O, et al. (2006) Identifying transcription factor
functions and targets by phenotypic activation. Proc Natl Acad Sci U S A 103: 12045-12050.

9. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, et al. (2000) Functional discovery
via a compendium of expression profiles. Cell 102: 109-126.

10. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, et al. (2004) Transcriptional regula-
tory code of a eukaryotic genome. Nature 431: 99-104.

11. MacIsaac K, Wang T, Gordon DB, Gifford D, Stormo G, et al. (2006) An improved map of conserved
regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7: 113.

9

12. Smith EN, Kruglyak L (2008) Gene-environment interaction in yeast gene expression. PLoS Biol
6: e83.

Supplementary Figures and Tables

This section contains the supplementary figures and tables referred to in the main text.

0.0003

physical

20

40

60

80

0.00044

glucose

0.00046

ethanol

0.0083

physical

10

20

30

40

50

60

70

80

0.00025

glucose

0.00021

ethanol

Figure 1. Connectivity of the best preserved clusters. Two top-ranking preserved clusters
(Clusters #1, #2) detected from applying JointCluster on the yeast physical and glucose/ethanol
coexpression networks. Cluster #1 is significantly enriched for functions related to translation and
mitochondria, and Cluster #2 is enriched for functions related to ribosome biogenesis. Modularity score
of a cluster in each network is shown below the corresponding heatmap. In these heatmaps, the darkness
of a spot x, y is scaled by the weight of the edge between the x–th and y–th gene in the cluster (darkest
spot is weight 1.0 and brightest is weight 0.0). The weight is a binary (1 or 0) indicator of interaction
between the genes in the physical network (labeled physical), and absolute correlation coefficient
between genes in the coexpression network (labeled glucose and ethanol). The inner band enveloping a
heatmap shows for each node v, the average edge weight from v to neighbors of v belonging to the same
cluster as v; the outer band shows the average edge weight from v to the remaining neighbors of v.
Hence, a good cluster’s inner band would be darker than its external band. The weight is a binary (1 or
0) indicator of interaction between the genes in the physical network (labeled physical), and absolute
correlation coefficient between genes in the coexpression network (labeled glucose/ethanol).

10

0.011

physical

20

40

60

80

0.00026

glucose

0.00017

ethanol

0.0038

physical

10

20

30

40

50

3.4e−005

glucose

2.8e−005

ethanol

Figure 2. Among the biologically significant clusters enriched for all reference classes, the clusters with
the highest (Cluster #4 in top row) and the lowest (Cluster #28 in bottom row) min-modularity score
are shown here. Heatmap conventions are the same as in Figure 1.

0.0059

physical

5

10

15

20

25

30

35

40

1.2e−005

glucose

1.4e−005

ethanol

Figure 3. Illustration of a subtle cluster: Cluster #52 in JointCluster’s clustering of the yeast physical
and coexpression networks. Heatmap conventions are the same as in Figure 1.

11

0.0006

physical

20

40

60

80

0.00046

<glucose+ethanol>

0.00087

physical

10

20

30

40

50

60

70

80

0.00045

<glucose+ethanol>

Figure 4. Example clusters identified by JointCluster in a two-network clustering of
<glucose+ethanol> and physical networks, despite poor physical connectivity of the clusters. These
clusters were significantly enriched for GO processes related to mitochondrion (protein targeting to
mitochondrion process with P = 1.7e-23 for the top cluster, and mitochondrion organization with P =
5.3e-19 for the bottom cluster), and were both top-ranked in the two-network clustering. A large
fraction of genes in the clusters (64 of 86 genes in the top and 39 of 79 genes in the bottom cluster)
were not present in any of the clusters detected by Matisse in the same two-network clustering. Matisse
enforces connectivity in the physical network when finding clusters, whereas JointCluster use a more
flexible framework in integrating multiple networks. Extreme examples of genes missed by Matisse
clusters were genes with no interaction partners in the physical network. Such physically isolated genes
in the top/bottom cluster were respectively: {ACN9, POA1, YPL098C, ERV1, YMR166C, YOR366W,
YNL140C} and {EMI5, ODC1, MDM35, PET191, YML087C}. Heatmap conventions are the same as
in Figure 1, except that the heatmap is based on an ordering of cluster genes that places physically
isolated genes first and other genes missed by Matisse clusters next before the remaining genes.

12

Table 1. Many clusters preserved in the yeast physical and glucose/ethanol coexpression networks
were significantly enriched for a GO Process term. Only the enrichment results for the top-25 ranked
clusters at a significance level of 0.005 (after Bonferroni correction for the number of reference sets in
GO Process class) are shown here, with the rank of a cluster given by an ordering of all clusters in the
detected clustering by their min-modularity scores. Enrichment P-value was calculated using the 4482
genes in the networks as the background.
Cluster
Rank
or
Iden-
tifier

GO Process Term Enrichment
P-value (P)

Genes
in Cluster

Genes
overlapping
cluster and
reference set

Genes
in ref-
erence
set

#1 translation 1e-20 82 38 367
#2 ribosome biogenesis 2.4e-37 76 59 609
#4 rRNA processing 2e-47 85 48 176
#5 Golgi vesicle transport 1.5e-08 95 17 155
#6 chromosome segregation 2.1e-06 90 12 114
#7 protein targeting to mitochondrion 3.6e-17 68 15 46
#8 vacuolar transport 1.2e-07 87 13 109
#12 mitochondrial translation 4.5e-33 72 28 76
#13 amino acid biosynthetic process 1.1e-16 96 20 82
#15 translation 9.1e-41 87 56 367
#16 negative regulation of macromolecule

metabolic process
1.9e-06 70 15 233

#19 oxidation reduction 1.6e-25 40 17 44
#20 maturation of 5.8S rRNA 4.4e-07 77 9 58
#21 gene silencing 3.8e-06 81 10 90
#22 ribosome biogenesis 6.2e-07 35 17 609

13

Table 2. Biologically significant clusters are clusters enriched for some gene set in all five reference
classes: GO Process, TF Perturbations, Compendium of Perturbations, TF Binding Sites, and eQTL
Hotspots (denoted as I to V respectively in the second column). The biologically significant clusters
detected by JointCluster on simultaneously clustering the yeast physical and glucose/ethanol
coexpression networks, and the reference sets for which they were enriched is shown. The columns have
the same interpretation as Table 1.
Cluster
Rank
or
Iden-
tifier

Reference class : reference set Enrichment
P-value (P)

Genes
in Cluster

Genes
overlapping
cluster and
reference set

Genes
in ref-
erence
set

I : rRNA processing 2e-47 85 48 176
II : SNF2 deletion 2.9e-06 85 26 534

#4 III : BUD22 deletion 1e-10 85 23 252
IV : ABF1 binding sites 1.1e-05 85 18 305
V : glu12 hotspot 8.1e-25 85 67 1159
I : amino acid biosynthetic process 1.1e-16 96 20 82
II : GCN4 overexpression 4e-24 96 31 143

#13 III : GCN4 deletion 3e-32 96 29 68
IV : GCN4 binding sites 1.6e-39 96 43 153
V : eth2 hotspot 3.5e-07 96 6 15
I : translation 9.1e-41 87 56 367
II : SPT10 deletion 9.4e-28 87 51 492

#15 III : ERG11 (tet promoter) deletion 1.6e-06 87 45 1244
IV : FHL1 binding sites 1.2e-32 87 33 109
V : gxe8 hotspot 1.6e-09 87 14 93
I : oxidation reduction 1.6e-25 40 17 44
II : SUT1 overexpression 9.5e-16 40 19 206

#19 III : RTS1 deletion 2.3e-11 40 12 99
IV : HAP4 binding sites 2.8e-23 40 16 45
V : gxe11 hotspot 5.5e-20 40 21 175
I : multi-organism process 2.5e-12 50 14 104
II : STE12 overexpression 5.7e-09 50 11 98

#28 III : FUS3, KSS1 (haploid) deletion 8.1e-21 50 14 30
IV : DIG1 binding sites 9.3e-30 50 27 129
V : glu7 hotspot 2.2e-12 50 11 49

