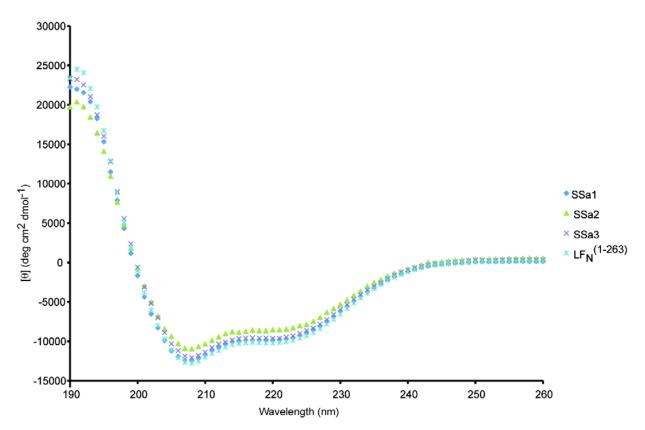

SUPPLEMENTAL INFORMATION

A semisynthesis platform for investigating structure-function relationships in the N-terminal domain of the anthrax lethal factor


Brad L. Pentelute[†], Adam P. Barker[†], Blythe E. Janowiak[†], Stephen B. H. Kent[‡], R. John Collier^{†*}

^aDepartment of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115. [‡]Department of Chemistry, University of Chicago, Chicago, IL 60637.

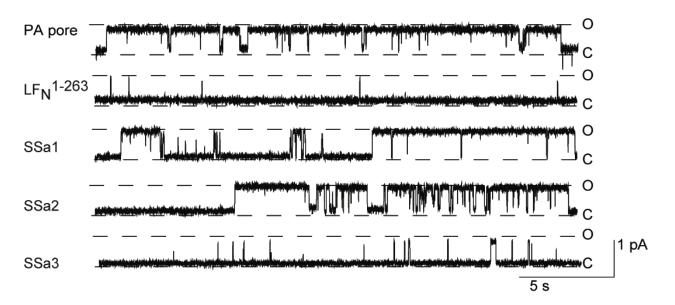

*Corresponding author, jcollier@hms.harvard.edu.

Figure S1. SDS-PAGE analysis of the purification of N29C-LF_N²⁹⁻²⁶³ on a 4-12% Tris Glycine gel. Lane 1, His₆-SUMO-N29C-LF_N²⁹⁻²⁶³; Lane 2, crude SUMO protease cleavage reaction products after overnight incubation; Lane 3, purified final product N29C-LF_N²⁹⁻²⁶³. (* = disulfide, & = SUMO)

Figure S2. Far-UV CD spectra of semisynthetic LF_N analogues SSa1, SSa2, SSa3 and recombinant LF_N^{1-263} . CD spectra were recorded on an Jasco J-815 instrument at room temperature in pH = 8.5 buffer containing 5 mM TRIS and 50 mM Na₂SO₄. A 1 mm path length cell was used.

Figure S3. Single PA pore planar phospholipid bilayer characterization of LF_N analogues under an applied membrane potential of 20 mV. The single-channel measurements were obtained under the same conditions used for macroscopic current recordings, except we added ~0.1 ng of PA prepore. "C" and "O" specify the closed and open states of the channel.