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Construction of clonal cell lines and flow cytometry

analysis

An HIV-1 derived lentiviral vector encoding a 2.5 hour half-life d2EGFP re-

porter gene (Clontech, San Jose, CA), was constructed via standard cloning

techniques, packaged in 293T Human Embryonic Kidney cells, and virus

harvested as previously described (Dull et al., 1998). This lentiviral vector

is referred to as LTR-GFP. Jurkat human T lymphocytes were infected with

harvested LTR-GFP virus at a low multiplicity of infection (MOI ≈ 0.05) to

minimize multiple integration events. Jurkat cells were grown in RPMI 1640

(supplemented with L-glutamine, 10% fetal bovine serum, and 1% penicillin-

streptomycin) in a humidified environment at 37 degrees Celsius and main-

tained by passage between 2× 105 and 2× 106 cells/mL. GFP positive cells

were single-cell sorted into 96-well plates by FACS and allowed to expand

over 3 weeks into clonal populations creating a final library of 30 distinct

LTR-GFP clones. After expansion, GFP fluorescence of individual clones

was measured by flow cytometry on a FACSCaliburTM(BD Biosciences, San

Jose, CA) and statistically analyzed using FlowJoTM( (Treestar Inc., Ash-

land, Oregon). For induction with TNF-α, clones were treated at a final

concentration of 10 ng/ul human TNF-α (Sigma-Aldrich Corporation, St.

Louis, MO), and fluorescence measured at 16 hours post TNF-α addition.
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EGFP Calibration and stochastic analysis of the

two-state model

Fluorescence intensity was converted to Molecular Equivalent of Soluble Flu-

orophores (MESF), which is a measure of GFP abundance, using EGFP Cal-

ibration Beads (BD Biosciences, Clontech, San Jose, CA). GFP abundance

of a given clone was calculated by subtracting the mean background Ju-

rkat auto-fluorescence and then multiplying by the measured MESF scaling-

factor of 3000 molecules per unit fluorescence intensity (data not shown).

To explain the high variability in HIV-1 gene expression we considered

a two-state promoter model where the LTR fluctuates between an inactive

and active state with rates kon, koff and transcriptional elongation only

occurs from the active state at a rate T. In such two-state models (Raj et

al., 2006, Simpson et al. 2004, Nakanishi et al. 2008) mRNAs are created

in bursts during promoter transitions from inactive to active state, with kon

and T/koff denoting the frequency and the average size of the transcriptional

bursts, respectively. The two-state promoter model is given by the following

set of chemical reactions:

Goff
kon−−−→ Gon, Gon

koff−−−−→ Goff

Gon
T−−→ Gon +mRNA, mRNA

dm−−−→ ∅

M
L−−→M +GFP

GFP
dp−−→ ∅.

In the stochastic formulation of this model each reaction is a probabilistic
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event, and random firings of individual reactions change population counts

based on the stoichiometry of that reaction (Gillespie, 1976). Let x(t) and

z(t), denote the population count of GFP and its mRNA at time t, respec-

tively. The state of the promoter is represented by g(t), with g(t) = 1 and

g(t) = 0 denoting that the promoter is active or inactive, respectively. A

convenient way to represent the time evolution of the vector y = [g, z,x]T is

through a set of reset maps with corresponding propensity functions (Singh

et al., 2009). This representation of the stochastic process y(t) is equivalent

to the Chemical Master equation, but from which it is easier to derive the

differential equations for the statistical moments (Davis, 1993). The above

model can be represented by the following six reset maps:

y 7→ φ1(y) =


g + 1

z

x

 , y 7→ φ2(y) =


g − 1

z

x

 , y 7→ φ3(y) =


g

z + 1

x


(1a)

y 7→ φ4(y) =


g

z− 1

x

 , y 7→ φ5(y) =


g

z

x + 1

 , y 7→ φ6(y) =


g

z

x− 1


(1b)

with corresponding propensity functions given by

λ1(y) = kon(1− g), λ2(y) = koff g, λ3(y) = T g, λ4(y) = dm z, (2a)

λ5(y) = L z, λ6(y) = dp x. (2b)
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In particular, whenever a reaction takes place its reset map is “activated”

and the population count is reset accordingly, furthermore, the probability

of the activation taking place in an “infinitesimal” time interval (t, t + dt]

is given by λi(y)dt. To derive the temporal dynamics of the statistical

moments of y the following equation is used (Singh et al., 2009):

dE[ψ(y)]
dt

= E

[
6∑

i=1

(ψ(φi(y))− ψ(y))λi(y)

]
(3)

where ψ(y) is an arbitrary differentiable function and E refers to the ex-

pected value. Using (3), the time derivative of vector µ defined by

µ = [E[g],E[z],E[x],E[g2],E[z2],E[x2],E[gz],E[zx],E[gx]]T (4)

is given by

dµ

dt
= ā + Aµ (5)

for an appropriate constant vector ā and a constant matrix A. Steady-state

analysis of (5) using Mathematica, yields

CV 2 =
dm dp

[
koff (koff+kon+dm+dp)

(koff+kon+dm)(koff+kon+dp) + (koff+kon)(L+dm+dp)
L T

]
(dm+ dp)kon

, (6a)

< GFP >=
kon L T

(koff + kon) dm dp
, (6b)

where CV and < GFP > refer to the steady-state coefficient of variation

and mean protein count, respectively. Under the assumptions koff � kon,
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koff � dm, koff � dp and L� dm+ dp the above equation reduces to

CV 2 =
T

koff + 1

E[x(∞)]
L

dm+ dp
, < GFP >=

kon L T

koff dm dp
. (7)

For an appropriate fixed average transcriptional burst size T/koff , increas-

ing the burst frequency kon will give a similar scaling of noise with mean

protein levels as observed in Eq. 1 and 2 of the paper.

Monte Carlo simulations in Fig 1c

To obtain GFP histograms corresponding to the constitutive gene expression

model, Monte Carlo simulations of the model were done using the Stochas-

tic Simulation Algorithm (Gillespie, 1976) with the following parameters:

2.5-hour GFP half-life; 3 hours GFP mRNA half-life (Raj et al., 2006),

translation rate of L ≈ 2500 hr−1 and the transcription rate was chosen as

T =
< GFP > dm dp

L
(8)

where < GFP > is the mean GFP population count of the Jurkat clone

and dp and dm are the GFP and GFP mRNA half-life’s, respectively. For

all Monte Carlo simulations an initial condition of 10 mRNA transcripts

and 30,000 GFP molecules were used. GFP histograms were constructed

by performing 30,000 different runs of the Stochastic Simulation Algorithm

with a simulation time of 25 hours.

To obtain GFP histograms corresponding to the two-state promoter

model, Monte Carlo simulations of the model were done using the fol-
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lowing parameters: 2.5-hour GFP half-life, 3 hours GFP mRNA half-life,

translation rate of L ≈ 2500 hr−1 and a transcriptional elongation rate of

T ≈ 60 hr−1. For a clone with a given < GFP > and coefficient of vari-

ation CV , the rates kon and koff for the two-state promoter model were

determined by solving Eq. 6. This resulted in an average transcriptional

burst size (T/koff) of 2 for both clones considered in Fig 1c, and a burst

frequency (kon) of 0.3 hr−1 and 0.7 hr−1 for the clone on the left and right

in Fig 1c, respectively.
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