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Here we give several results that are supplementary to the main body of our analysis. In
particular, we examine (1) the role of a drag force, such as might arise from a moving chro-
mosome; (2) the detachment time for a Dam1 ring, and (3) present the data we use to fit our
model.
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Figure 1: Ring velocity v dependence on bare depolymerization velocity vbb of both models
under f0 = 1 pN compared to velocity dependent chromosome drag f (v) = v · (kBT/Dc)+ f0.
Under constant load, velocity increases linearly. With an additional chromosome drag (Dc =
0.0004 µm2/s (1)) the total load increases proportionally to v and consequently v follows the
form of the Lambert-W function.

The effect of occlusion of the MT end by the ring on v is given by

v = (vbb− vps)
∫

∞

δ

φ(x)dx+ vps, (1)

To account for the viscous drag caused by moving a chromosome at constant velocity
through the cytosol of a cell, the load force f must have a component that is proportional
to velocity, where the constant coefficient is given by the Einstein relation ξ = kBT/D (2).
Thus

f (v) = ξ v+ f0, (2)

1



where f0 is the constant (external) load, and f (v) is directed towards the chromosome. To solve
Eqs. 1 and 2 self-consistently for v we consider the Dam1 ring diffusing on the MT, as Eq. 1
in the main article, with a reflecting (i.e. zero flux) boundary condition at the tip

∂φ

∂ t
= D

∂

∂x

(
∂φ

∂x
+

f (v)
kBT

φ

)
. (3)

At steady state, assuming the quasi-equilibrium condition λ/v( f )� λ 2/D holds, the flux
must vanish, according to

dφ

dx
+

f (v)
kBT

φ = 0. (4)

giving the quasi-equilibrium distribution

φ(x) =
f (v)
kBT

exp
(
− f (v)

kBT
x
)

. (5)

Substituting Eq. 5 into Eq. 1 and solving for v

v =
D
δ

W
[
(vbb− vps)δ

D
exp
{
−
(

vps

D
+

f0

kBT

)
δ

}]
+ vps, (6)

where W (·) is the Lambert-W function (3). A comparison of Eq. 6 and Eq. 4 from the main
article is shown in Fig. 1.

2 First passage time
The average distance of the ring from the tip is

λ =
kBT

f

and the characteristic time to diffuse this length is tD = λ 2/D. For the assumption that distri-
bution of the ring position is quasi-static to hold we require tD� tunzip, or equivalently

f � kBT
(

kunzip

D

)1/2

= fmin (7)

If this condition is met then the probability that the ring does not reach the tip before further
unzipping takes place is negligible (for vbb = 580 nm/s we find fmin = 0.15 pN). Otherwise,
we must include the probability that the first passage time tfp, the time it takes the ring to first
reach the tip, satisfies tfp < tunzip, for which detachment occurs. Following Redner (4), we can
calculate this probability. The distribution of tfp for a particle at λ at time t = 0 is

tfp(t) =
λ

(4πDt3)1/2 e−λ 2/4Dt
. (8)

The probability the particle reaches the end before the protofilaments grow is then

Pfp(tunzip) =
∫ tunzip

0
tfp(t)dt

= 1− erf

(
λ(

4Dtunzip
)1/2

)
. (9)
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We can thereby calculate the mean residence time of a ring on a shrinking MT

τ =
〈tunzip〉

PdetachPfp(〈tunzip〉)
, (10)

where Pdetach is the probabilty of detachment during a step as calculated in the main text.

3 Velocity of ring under load

Force f (pN) 0.5±0.2 2.0±0.2
# measurements 44 28
Total depolymerization time (h) 0.212±0.036 0.068±0.013
# detachments 32 20
Detachment frequency (1/h) 150±30 290±70
Velocity v (nm/s) 158±26 56±10
Runtime τres (sec) a 23.9±6.2 12.2±4.1
Runlength y (µm) b 3.8±1.0 0.7±0.2

aCalculated by dividing total depolymerization time by # detachments.
bCalculated by multiplying runtime by velocity.

Table 1: Velocity of ring during MT disassembly under various loads. Data obtained from Table
1 of Franck et al. (5). Runtime and runlength defined as the time and distance, respectively,
between switching to depolymerization and detachment.

We constrain our model by comparison with recent experiments where load has been ap-
plied to a Dam1 ring attached to a depolymerizing MT by way of an optical trap (5–7). The
nature of MT depolymerization and ring motion is highly stochastic. The available data from
(5) is displayed in Table 1.
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