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I.  MATERIALS A�D METHODS 

 

The calculations for Figs. 2-4, Fig. 6 and Fig. S1-S3 were done in MATLAB 7 (Mathworks, 

Natick, MA).  

 

 
II. SUPPLEME�TARY BACKGROU�D 

 

A.  A Simple Phosphorylation-Dephosphorylation System 

 

 

The system in Scheme 1 is described by the following differential equations: 

 

  
[B

0
′] = −[B

1
′] = −k

0
[A][B

0
]+ d

0
[F ][B

1
]  (S1) 

 

Due to our assumption that the enzyme-substrate complexes are so transient that they can be 

ignored, [A] and [F] don’t change during the course of the reaction.  The parameters [B0] and 

[B1] do change during the course of the reaction, eventually reaching a steady-state value.  To 

obtain the steady state solution, we set 
  
[B

0
′] = 0  and make use of the conservation equation 

 

  
[B

total
] = [B

0
]+ [B

1
]  to obtain 

 

  

[B
1
]

[B
total

]
=

[A]

d
0

k
0

[F]+ [A]

 (S2) 

 This function expresses the fraction of B that is phosphorylated at steady-state (the bar over 

B1 indicates a steady-state value; since [A] and [F] don’t change during the course of the 

reaction, we leave the bars off them). The function has a minimum value of 0, obtained when [A] 

is 0 and approached when [F] is very large, and a maximum value of 1 (i.e. 100% of B is 

phosphorylated), approached when [A] is very large and obtained when [F] is 0. The function 

reaches its half-maximal value of 50% phosphorylation when [A] =

  

d
0

k
0

[F ] . At low values of [A] 

the function is approximately linear in [A]; therefore, it is a poor threshold. In addition, it takes 

an 81-fold increase in [A] to move B from 10% phosphorylation to 90% phosphorylation; 

therefore, it is a poor switch.  

 

 

B.  Phosphorylation-Dephosphorylation as a Hill Function 
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In this section we examine the unrealistic assumptions that are required in order for an 

unembellished multisite phosphorylation scheme to resemble a Hill function.  This will serve as 

a useful comparison to the more realistic approach described later.  A simple, but inaccurate way 

to represent multisite phosphorylation is as follows: 

 

  
2A+ B

0

k0 → 2A + B
2
 (Scheme S1a) 

 

Here B is phosphorylated on two phosphorylation sites (phosphosites), converting it from 

completely unphosphorylated to fully phosphorylated, with each phosphorylation requiring a 

separate collision with a molecule of A; that is, phosphorylation is distributive. The inaccurate 

aspect of the scheme is the assumption that both of these collisions must occur essentially 

simultaneously, with both phosphates being put on at nearly the same time, or neither put on at 

all. That is, the scheme ignores the possibility of the intermediate, singly-phosphorylated 

phosphoform B1. 

 

 The dephosphorylation step is represented as follows: 

 

 
  

F + B
2

d0 → F + B
0
 (Scheme S1b) 

 

That is, both phosphates are removed following a single collision of B2 with a phosphatase 

molecule; dephosphorylation is processive. 

 

 The corresponding differential equations are 

 

 
  
[B

0
′] = −[B

2
′] = −k

0
[A]2[B

0
]+ d

0
[F][B

2
]  (S3)  

 

and the conservation equation is
  
[B

total
] = [B

0
]+ [B

2
] , thus yielding the steady-state equation 

 

 

  

[B
2
]

[B
total

]
=

[A]2

d
0

k
0

[F]+ [A]2
 (S4)  

 

This is version of the familiar Hill equation, which takes the more general form 

 

 

  

[B*]

[B
total

]
=

[A]h

K + [A]h
 (S5) 

 

where B* is a modified (e.g. activated) species of B, whose steady-state concentration 

corresponds to the output, while [A] corresponds to the input.  Thus the Hill function expresses 

the relationship between input A and output B*.  K is a combined parameter whose value will 

depend on the particular parameters of the system (e.g. in Eq. S5 
  
K = d

0
[F ] / k

0
).  The exponent 
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h is known as the Hill number.  (See Fig. S1 for examples of Hill functions).  The Hill function 

has the following properties: 

 

1.  It has a minimum of 0 and a maximum of 1 (because the left hand side is B* as a fraction of 

Btotal).  For h = 1, it describes a curve with a hyperbolic shape; indeed, Eq. 1 is a Hill function 

with h = 1.  For h > 1 the curve of the Hill function is sigmoidal, or S-shaped. 

 

2.  The EC50 (effective concentration 50%– the [A] at which the function is half-maximal) can 

be found by replacing the left hand side of Eq. 2 with to 0.5 and solving for [A], yielding  

EC50 = K
h

. 

 

 

4.  The fold change in [A] (i.e., input) needed to go from 10% to 90% maximal output is 

 

 
  

EC90

EC10
= 81

h
 

 

 From Property 4, we can derive the formula for the effective Hill number by replacing h with 

nH  and solving for nH: 

 

 

  

n
H
=

ln81

ln
EC90

EC10








 

 

 

C.  Derivation for Models for Distributive Multisite Phosphorylation 

 

The differential equations for the Scheme 2 are 

 

  

dB
0

dt
= − f

0
B
0
+ g

0
B
1
 (S6) 

  

dB
1

dt
= f

0
B
0
− f

1
B
1
− g

0
B
1
+ g

1
B
2
  (S7) 

  

dB
2

dt
= f

1
B
1
− g

1
B
2
 (S8) 

 

 At steady-state, from equations (S6) and (S8) we can readily derive the following 

relationships (where the bars indicate steady-state conditions): 

 

3.  Similarly,   EC10 = 
  

K

9
h =

  

EC50

9
h

,    EC90 = EC50 9
h
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B
1
=

f
0

g
0

B
0
 (S9) 

 

  

B
2
=

f
1

g
1

B
1
=

f
1
f
0

g
1
g
0

B
0
 (S10) 

 

Indeed, the relationship  

 

  

B
i+1 =

f
i

g
i

B
i
                                                                                                                               (S11) 

 

will hold for similar schemes representing any number of states. 

 

 By substituting the conservation equation B0+ B1+ B2= Btotal into Eqs. S9 and S10, we obtain 

 

  

B
0

B
total

=
g
0
g
1

g
0
g
1
+ f

0
g
1
+ f

0
f
1

,
B
1

B
total

=
f
0
g
1

g
0
g
1
+ f

0
g
1
+ f

0
f
1

,
B
2

B
total

=
f
0

f
1

g
0
g
1
+ f

0
g
1
+ f

0
f
1

 (S12) 

 

The differential equations for Scheme 2 with 3 phosphorylation sites can be described by the 

following: 

 

  

dB
0

dt
= − f

0
B
0
+ g

0
B
1
  

  

dB
1

dt
= f

0
B
0
− f

1
B
1
− g

0
B
1
+ g

1
B
2
  (S13) 

  

dB
2

dt
= f

1
B
1
− f

2
B
2
− g

1
B
2
+ g

2
B
3
  

  

dB
3

dt
= f

2
B
2
− g

2
B
3
                                                                                                                     

 

The relationship (S11) still holds for all Bi
’s, and using the conservation equation 

B0 + B1 + B2 + B3 = Btotal ,  similarly we obtain 

 

  

B
3

B
total

=
f
0

f
1
f
2

g
0
g
1
g
2
+ f

0
g
1
g
2
+ f

0
f
1
g
2
+ f

0
f
1
f
2

                                                                             (S14)  
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Figure S1.  Illustration of standard Hill function in a form of 
Input
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h
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III.  SUPPLEME�TARY RESULTS 

 

A.  Models and Equations for Kinase Action Away From the Sequester 
 

The mass action equations based on the reactions in Figure 1 take the following form: 

 

0 0 0 0 1 0 0 0 0

1 1 1 0 0 0 1 1 2 1 1 1 1

2 2 2 1 1 1 2 2 3 2 2 2 2

1 1 1 2 2

[ ] [ ][ ] [ ] [ ][ ] [ ]

[ ] [ ][ ] [ ][ ] [ ] [ ] [ ][ ] [ ]

[ ] [ ][ ] [ ][ ] [ ] [ ] [ ][ ] [ ]

[ ] [ ][ ] [ ][ ]

a d

a d

a d

n n n n n

B k A B d B k S B k B S

B k A B k A B d B d B k S B k B S

B k A B k A B d B d B k S B k B S

B k A B k A B− − − − −

′ = − + − +

′ = − + − + − +

′ = − + − + − +

′ = − +

⋮

2 1 1 1 1 1 1

1 1 1

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

[ ] [ ] [ ][ ] [ ]

[ ] [ ][ ] [ ] [ ][ ] [ ]

[ ] [ ][ ] [ ]

[ ] [ ][ ] [ ]

[ ] [ ][ ] [ ]

[ ] [ ][ ] [

a d

n n n n n n n n

a d

n n n n n n n n n

a d

a d

a d

a d

n n n n n

d B d B k S B k B S

B k A B d B k S B k B S

B S k S B k B S

B S k S B k B S

B S k S B k B S

B S k S B k B S

− − − − − − −

− − −

− + − +

′ = − − +

′ = −

′ = −

′ = −

′ = −

⋮

[ ] 0 0 0 0

]

[ ] [ ][ ] [ ] [ ][ ]d a d a

n n n nS k B S k S B k B S k S B′ = − + + −⋯

    (S15)       

Denote 

 

,   0,1, 2 1; ,   0,1, 2 .
a

j i
j i d

j i

k k
j n i n

d k
µ λ= − =≜ ⋯ ≜ ⋯  

 

A steady-state analysis of the system results in  

 

1

1

[ ] [ ][ ],   0,1, 2, ;

[ ]
[ ],   1, 2, .

[ ]

i i i

i
i

i

B S B S i n

B
A i n

B

λ

µ −
−

= =

= =

⋯

⋯
 

 

Because the total amount of the sequesterer and sequesterer-substrate is conserved, we obtain 
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( )2

0

1

01
0

0

0 0 0

4

[ ] ,
2

[ ] [ ]

[ ] [ ] [ ] ,   [ ] ,   [ ]
1 [ ] 1 [ ]

t t t t t

n
n

n t in
n t i

n i n

i

B q S q p B q S q p pqB

B
pq

A B S
S

B A B S B S
q B q B

λ µ
µ

−

−
=

=

 − − + − − + 
 =

= = =
+ +

∏
∏

                          (S16) 

 

where 

 

  

p = 1+ [A]i

i=1

n

∑ µ
j

j=0

i−1

∏ , q = λ
0
+ λ

i
i=1

n

∑ [A]i µ
j

j=0

i−1

∏ ,    B
t
= B

total
.  

 

Figure S2 shows the Hill coefficients for the sum of the free substrate and the sequestered 

component to compare with the case for the free substrate or the sequestered component alone in 

Figures 2-4. All three quantities behave similarly with similar dependence on the parameters.    

 

To gain insight of the steady-state solutions, we analyze the following special cases: 

 

 

1. Without  sequestration, we obtain  

 
1 1

0 0

10 0

[ ] ,   [ ] [ ] [ ] ;   1 [ ] .
n in

n it
n i j

ii j

B
B B A B p A

p
µ µ

− −

== =

= = = +∑∏ ∏  

 

The system now is reduced to the system without sequestration studied in (1).  

 

2. When 

 

[ ] [ ],   0,1, 2, ,i i iB S B i nλ= = ⋯                                                                                         (S17) 

 

the model is reduced to the first-order binding case.  The solution then takes a simple form:  

( ) ( )

( ) ( )

1 1

0 0

1 11

0

1 0 0

1 1

0 0

1 11

0

1 0 0

[ ] [ ]
[ ]

,

1 [ ] 1 [ ] 1

[ ] [ ]
[ ]

.

1 [ ] 1 [ ] 1

n n
n n

i i

n i i

i nn
i nt

i j n j

i j j

n n
n n

n i n i

n i i

i nn
i nt

i j n j

i j j

A A
B

B p q
A A

A A
B S

B p q
A A

µ µ

λ λ µ λ µ

λ µ λ µ

λ λ µ λ µ

− −

= =
− −−

= = =

− −

= =
− −−

= = =

= =
+ + + + + +

= =
+ + + + + +

∏ ∏

∑ ∏ ∏

∏ ∏

∑ ∏ ∏

                (S18) 
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When 

 

1,   0,1, 2, 1,i i nµ = = −⋯   

 

the solution becomes 

 

( ) ( )

( ) ( )

1

0

1

1

0

1

[ ] [ ] [ ]
,

1 [ ] 1 [ ] 1

[ ] [ ] [ ]
.

1 [ ] 1 [ ] 1

n n

n

n
i nt

i n

i

n n

n n n

n
i nt

i n

i

B A A

B p q
A A

B S A A

B p q
A A

λ λ λ

λ λ

λ λ λ

−

=

−

=

= =
+ + + + + +

= =
+ + + + + +

∑

∑

                                               (S19) 

When  

 

1 ,   1, 2, 1,n i i nλ λ = −≫ ≫ ⋯  

 

the rational form of the above solution approximates the Hill function with an exponent n.    

 

 

B.  The Model with The Kinase Co-localized on The Scaffold 

 

The mass action equations based on reactions in Figure 5 take the form: 

0 0 1 0 0 0 0

1 0 1 1 2 1 1 1 1

2 1 2 2 3 2 2 2 2

1 0 0 0 0 0 0 0

1 0 0 1 1

[ ] [ ] [ ][ ] [ ]

[ ] [ ] [ ] [ ][ ] [ ]

[ ] [ ] [ ] [ ][ ] [ ]

[ ] [ ] [[ ] [ ][ ] [ ][ ] [ ]

[ ] [ ][ ] [ ][ ]

a d

a d

a d

a a d

n n n n

B d B k S B k B S

B d B d B k S B k B S

B d B d B k S B k B S

B d B k B S k B S A k S B k B S

B S k B S A k B S A

−

′ = − +

′ = − + − +

′ = − + − +

′ ′= − − = − + −

′ = − +

⋮

[ ]

1 1 1 1

1 1

0 0 0 0

[ ][ ] [ ]

[ ] [ ] [ ][ ] [ ]

[ ] [ ][ ] [ ] [ ][ ] ][ ] [ ]

a d

a d

n n n n n n n

d a d a d

n n n n n n n

k S B k B S

B S k B S k S B k B S

S k B S k S B k B S k S B S B k B S

− −

−

′ = + −

′ = − + + − +

⋮

⋯

                           (S20) 

 

When 

[ ] [ ],   0,1, 2, ,i i iB S B i nλ= = ⋯  

the solution can be derived explicitly with a form: 
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1

0

1 1

0

1 10 0

1

0

1 1

0

1 10 0

[ ]
,

1

[ ]
,

1

n

j j

jn
n i in n

t
j j i j j

i ij j

n

n j j

jn
n i in n

t
j j i j j

i ij j

B

B

B S

B

λ µ
ρ

λ λ µ λ λ µ

λ λ µ
µ

λ λ µ λ λ µ

−

=
− −

= == =

−

=
− −

= == =

= =
+ + +

= =
+ + +

∏

∑ ∑∏ ∏

∏

∑ ∑∏ ∏

ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ

                                                               (S21) 

 

where  

 

0 1 1
0

0 0

[ ]
,   0,1, 2 1;

,   ,   1, 2 1,   .
[ ] [ ]

j

j

j

a a a

i i n n
i nd d d

i i n

k A
j n

d

k k d k d
i n

k k A k k A k

µ

λ λ λ− −

= −

+ +
= −

+ +

ɶ ≜ ⋯

ɶ ɶ ɶ≜ ≜ ⋯ ≜
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IV.  ADDITIO�AL SUPPLEME�TARY FIGURES 

 

 
 

Figure S2.  Hill coefficient for n nρ µ+  as a function of the number of phosphorylation sites and 

fold change of binding ratios with each phosphorylation: (2c) for strategy 1, (3c) for strategy 2,  

and (4c) for strategy 4, with each corresponding to Figures 2-4, respectively. Hill coefficients for 

n nρ µ+  as a function of the number of phosphorylation sites and total S: (2-1) for strategy 1, (3-

1) for strategy 2, and (4-1) for strategy 4, with each corresponding to Figures 2-4, respectively. 

Hill coefficients for n nρ µ+  as a function of total S:  (2-2) for strategy 1, (3-2) for strategy 2, 

and (4-2) for strategy 3, with each corresponding to Figures 2-4, respectively. 
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Figure S3. Threshold as a function of number of phosphosites and α and β. The parameters are 

identical to the cases in Figure 6. For example, (6b) corresponds to Figure 6 (b). 
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