SUPPLEMENTARY FIGURE LEGENDS

FIGURE S1. Specificity of oxPTP mAb for oxidized highly conserved PTP peptide surrounding the catalytic site cysteine. *A-B*, The peptides VHCSAG and its oxidized form ox-VHCSAG were prepared as described in Experimental procedures, and dissolved in PBS. Masses of VHCSAG (*A*) and ox-VHCSAG (*B*) were determined by mass spectrometry. *C*, mAb oxPTP in PBS (Con.) or in PBS with different concentrations of VHCSAG or ox-VHCSAG peptides was used for immunoblotting detection of oxidized phosphatases in size-fractionated postnuclear supernatants from Triton X-100-solubilized RBL cells activated for 15 min with 0.2 mM pervanadate. The blots were analyzed by densitometry and the data obtained were normalized to a control without peptide (Fold). Numbers on the right indicate positions of molecular weight markers in kDa. Two immunoblotting experiments were performed with similar results.

FIGURE S2. Oxidation of immunoprecipitated PTPs. BMMCs were activated by Pv (0.2 mM, 15 min), and SHP-1, SHP-2, HePTP and PTP-MEG2 (MEG2) were immunoprecipitated with the corresponding antibodies. The immunoprecipitated PTPs together with total cell lysates (Total) were size-fractionated by SDS-PAGE and analyzed by immunoblotting with oxPTP mAb (left) or PTP-specific antibodies (right). Position of individual phosphatases is indicated on the right. It should be noted that in fractionated total cell lysate, oxPTP mAb reacts weakly with SHP-2 and strongly with SHP-1, which has lower molecular weight.

Figure S1 Heneberg et al.

Figure S2 Heneberg et al.

Measured	Computed	Peptide			Peptide	
mass	mass	sequence			position	
$[M+H]^+$	$[M+H]^+$					
897.4352	897.4344	R.QPYYA	ATR.V		211 - 217	
902.4982	902.4974	R.GVPGS	FLAR.P		22 - 30	
991.4257	991.4247	R.EHDTA	EYK.L		384 - 391	
1069.5526	5 1069.5516	R.LEGQR	PENK.S		263 - 271	
1081.5512	2 1081.5512	R.VDDQV	/THIR.I		45 - 53	
1097.5616	5 1097.5618	K.NILPFI	DHSR.V		278 - 286	
1103.576	1103.5764	K.GEPW7	FFLVR.E		128 - 136	
1121.5462	2 1121.5465	K.NQGDI	FSLSVR.V		35 - 44	
1240.5762	2 1240.5758	R.SGMV(QTEAQYK.F		496 - 506	
1257.6349	9 1257.6353	R.VYGLY	SVTNSR.E		373 - 383	
1437.6204	4 1437.6194	K.YPLNC	SDPTSER.W		98 - 109	
1469.6829	9 1469.6827	K.AGFWI	EEFESLQK.Q		242 - 253	
1490.6969	9 1490.6976	K.CVPYV	VPEVGTQR.V		361 - 372	
1511.7603	3 1511.762	K.TGIEEA	ASGAFVYLR.Q	<u>)</u>	197 - 210	
1539.8256	5 1539.8257	R.TLQISF	PLDNGDLVR.E		394 - 407	
1642.8991	1 1642.897	K.FIYVA	IAQFIETTK.K		507 - 520	
1704.763	1 1704.7631	R.IQNSG	DFYDLYGGEK	F	54 - 68	
1768.8305	5 1768.8268	R.DSNIPO	GSDYINANYVI	K.N	293 - 308	
1779.8456	5 1779.8428	K.GQESE	YGNITYPPAV	R.S	531 - 546	
1980.9829	9 1980.9806	R.WYHG	HISGGQAESLL	.QAK.G	110 - 127	
2072.0445	5 2072.0426	R.ESLSQ	PGDFVLSVLNI	DQPK.A	137 - 155	
2244.0541	1 2244.0587	R.YTVGC	SETFDSLTDL	VEHFK.K	176 - 195	
2372.161	1 2372.1536	R.YTVGC	SETFDSLTDL	VEHFKK.T	176 - 196	
2515.2648	3 2515.2595	K.FATLT	ELVEYYTQQQ	GILQDR.D	69 - 89	
1	MVRWFHRDLS	GPDAETLLKG	RGVPGSFLAR	PSRK NQGDFS	LSVRVDDQVT	
51	HIRIQNSGDF	YDLYGGEKFA	TLTELVEYYT	QQQGILQDR D	GTIIHLK YPL	
101	NCSDPTSERW	YHGHISGGQA	ESLLQAKGEP	WTFLVRESLS	QPGDFVLSVL	
151	NDQPK AGPGS	PLRVTHIKVM	CEGGR YTVGG	SETFDSLTDL	VEHFKKTGIE	
201	EASGAFVYLR	QPYYATR VNA	ADIENRVLEL	NKKQESEDTA	K agfweefes	
251	LQK QEVKNLH	QR leggrpen	K SKNRYK NIL	PFDHSR VILQ	GR DSNIPGSD	
301	YINANYVKNQ	LLGPDENSKT	YIASQGCLDA	TVNDFWQMAW	QENTRVIVMT	
351	TREVEKGRNK	CVPYWPEVGT	QRVYGLYSVT	NSREHDTAEY	K LR TLQISPL	
401	DNGDLVR EIW	HYQYLSWPDH	GVPSEPGGVL	SFLDQINQRQ	ESLPHAGPII	

TABLE S1Mass spectrometry identification of SHP-1 in oxPTP mAb immunoprecipitate

The cells were activated by pervanadate (0.2 mM, 15 min) and oxidized PTPs were immunoprecipitated with oxPTP mAb and analyzed by mass spectrometry as described in Experimental procedures. Measured and computed masses, peptide sequences and peptide positions are shown. Amino acids of the identified peptides in the mouse SHP-1 (UniProtKB/Swiss-Prot P29351) are indicated in bold and underlined (bottom part of the table).

451 VHCSAGIGRT GTIIVIDMLM ESISTKGLDC DIDIQKTIQM VRAQR<u>SGMVQ</u>501 TEAQYKFIYV AIAQFIETTK KKLEIIQSQK GQESEYGNIT YPPAVRSAHA

551 KASRTSSKHK EEVYENVHSK SKKEEKVKKQ RSADKEKNKG SLKRK

TABLE S2

Mass spectrometry	v identification	of SHP-2 in oxl	PTP mAb imm	unoprecipitate
-------------------	------------------	-----------------	-------------	----------------

Meas mass [M+I	sured H] ⁺	Comp mass [M+H	outed	Peptic seque	le nce		Peptide position position
1440 1471 1645 2050 2282 2372	.7016 .7964 .8041 .0145 .0193 .2179	1439. 1470. 1644. 2049. 2281. 2371.	6943 7892 7968 0072 012 2106	R.QL' R.GE R.IQI K.IPS K.CV K.HII	TIQHQQECR.S VDILGIVCQLR DMKEHPEYTV NFVNPEDLDII HYWPTEEEAY LFSAWPDHQT	R.L R.Q PGHASK.D (GPFQIR.I PESAGPLLR.L	214 - 224 293 - 305 201 - 213 83 - 101 183 - 200 228 - 248
1	MTQPPP	ТКАР	AKKHVR	LQER	RGSSVALMLD	VQSLGTVEPI	CSVNTPREVT
51	LHFLRT	AGHP	LTRWTL	QHQP	PSPKQLEEEF	LK ipsnfvnp	EDLDIPGHAS
101	K DRYKT	ILPN	PQSRVC	LGRA	QSQEDSDYIN	ANYIRGYDGK	EKVYIATQGP
151	MPNTVA	DFWE	MVWQED	VSLI	VMLTQLREGK	EK CVHYWPTE	EEAYGPFQIR
201	IQDMKE	HPEY	TVRQLT	IQHQ	QECR SVKHIL	FSAWPDHQTP	ESAGPLLR LV
251	AEVETP	ETAA	NSGPIV	VHCS	AGIGRTGCFI	ATRIGCQQLK	AR GEVDILGI
301	VCQLR L	DRGG	MIQTAE	QYQF	LHHTLALYAA	QLPPEPNP	

The cells were activated and analyzed as in Table S1. Amino acids of the identified peptides in the mouse SHP-2 (UniProtKB/Swiss-Prot Q8BUM3) are indicated in bold and underlined (bottom part of the table).