Covalent Cross-Linking of Glutathione and Carnosine to Proteins by 4-Oxo-2-nonenal[§]

Xiaochun Zhu[†], Molly M. Gallogly⁺, John J. Mieyal⁺, Vernon E. Anderson^{*,‡}, and Lawrence M. Sayre^{1,†}

[†] Department of Chemistry, Case Western Reserve University

⁺ Department of Pharmacology, Case Western Reserve University

[‡] Department of Biochemistry, Case Western Reserve University

Cleveland, OH 44106

Supporting Information

Table S1. GSH–ONE-modified β-LG peptides detected by HPLC-ESI-MS/MS in the

Peptide sequence	Position	Mass of GSH-ONE-modified peptide		Modified
		Theoretical	Observed	residue
LIVTQ	1–5	998.52/1007.58	998.59/1007.60	L1
LIVTQT	1–6	1099.57/1108.63	1099.59/1108.64	L1
KGL	8-10	742.38/751.44	742.46/751.48	K8
KGLDIQ	8-13	1098.55/1107.61	1098.57/1107.58	K8
KGLDIQKVAGTW	8-19	1740.89/1749.95	1740.81/1749.89	K8
KGLDIQKVAGTW	8-19	1740.89/1749.95	1740.86/1749.88	K14
DIQKVAGTW	11–19	1442.71/1451.75	1442.61/1451.64	K14
KVAGTW	14–19	1086.53/1095.59	1086.50/1095.60	K14
VEELKPTPEGDLEIL	43-57	2107.05/2116.11	1054.36/1058.90#	K47
LQKW	58-61	999.50/1008.55	999.52/1008.57	K60
QKW	59-61	886.41/895.47	886.35/895.43	K60
TKIPAVF	76-82	1200.63/1209.69	1200.67/1209.66	K77
KIDAL	83-87	984.51/993.56	984.50/993.56	K83
KIDALN	83-88	1098.55/1107.61	1098.54/1107.51	K83
KIDALNENKVL	83-93	1681.88/1690.94	1681.76/1690.74	K83
KIDALNENKVL	83-93	1681.88/1690.94	1681.82/1690.91	K91
NENKVL	88-93	1141.56/1150.61	1141.55/1150.57	K91
KVL	91–93	784.43/793.48	784.44/793.48	K91
KKY	100-102	863.43/872.49	863.49/872.54	K100

KKY	100-102	863.43/872.49	863.51/872.56	K101
VRTPEVDDEALEKF	123-136	2072.99/2082.04	1037.39/1041.85#	K135
DKAL	137-140	871.42/880.48	871.42/880.53	K138
KALPM	141-145	984.49/993.55	984.53/993.58	K141

#: double charged peak

Table S2. Carnosine–ONE-modified β-LG peptides detected by HPLC-ESI-MS/MS

in the chymotryptic digest

Peptide sequence	Position	Mass of Carnosine-ONE-modified peptide		Modified
		Theoretical	Observed	residue
KGL	8-10	661.40/670.43	661.47/670.57	K8
VEELKPTPEGDLEIL	43-57	2026.07/2035.10	$1013.80/1018.74^{\#}$	K47
LQKW	58-61	918.52/927.55	918.56/927.57	K60
KIDAL	83-87	903.53/912.57	903.59/912.58	K83
KIDALNENKVL	83–93	1600.91/1609.93	1600.80/1609.90	K91
ККҮ	100-102	782.46/791.48	782.44/791.58	K100 or K101
VRTPEVDDEALEKF	123-136	1992.01/2001.03	996.85/1001.31 [#]	K135
DKAL	137-140	790.45/799.47	790.50/799.49	K138
KALPM	141-145	903.51/912.54	903.60/912.58	K141
HIRL	146-149	882.53/891.56	882.66/891.86	H146

#: double charged peak

Figure S1. SIC and tandem mass spectrum of modified ¹<u>L</u>IVTQTM⁸K at L1 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S2. SIC and tandem mass spectrum of modified ¹LIVTQTMKGLDIQ¹⁴K at L1 or K8 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S3. SIC and tandem mass spectrum of modified 41 VYVEEL<u>K</u>PTPEGDLEILLQ⁶⁰K at K47 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S4. SIC and tandem mass spectrum of modified ⁶¹WENDEC*AQK⁷⁰K at K69 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S5. SIC and tandem mass spectrum of modified ⁶¹WENGEC*AQ $\underline{\mathbf{K}}^{70}$ K at K69 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S6. SIC and tandem mass spectrum of modified ${}^{70}\underline{\mathbf{K}}$ IIAE 75 K at K70 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S7. SIC and tandem mass spectrum of modified ⁷¹IIAE<u>K</u> T^{77} K at K75 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S8. SIC and tandem mass spectrum of modified ${}^{76}T\underline{K}IPAVF^{83}K$ at K77 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S9. SIC and tandem mass spectrum of modified ⁷⁸IPAVF<u>K</u>IDALNEN⁹¹K at K83 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S10. SIC and tandem mass spectrum of modified ⁸⁴IDALNEN<u>K</u>VLVLDTDY¹⁰⁰K at K91 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S11. SIC and tandem mass spectrum of modified ⁹²VLVLDTDY<u>K</u>¹⁰¹K at K100 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S12. SIC and tandem mass spectrum of modified ¹²⁵TPEVDDEALE<u>K</u>FD¹³⁸K at K135 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S13. SIC and tandem mass spectrum of modified ¹³⁶FD<u>K</u>AL¹⁴¹K at K138 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S14. SIC and tandem mass spectrum of modified ¹³⁹AL<u>K</u>ALPMHI¹⁴⁸R at K141 by GSH– d_0 -ONE MA (1nd trace and 1st spectrum) or GSH– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S15. SIC and tandem mass spectrum of modified ¹<u>L</u>IVTQTM⁸K at L1 by carnosine– d_0 -ONE MA (1nd trace and 1st spectrum) or carnosine– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S16. SIC and tandem mass spectrum of modified ⁴¹VYVEEL<u>K</u>PTPEGDLEILLQ⁶¹K at K47 by carnosine– d_0 -ONE MA (1nd trace and 1st spectrum) or carnosine– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S17. SIC and tandem mass spectrum of modified ⁷¹IIAE<u>K</u>T⁷⁷K at K75 by carnosine– d_0 -ONE MA (1nd trace and 1st spectrum) or carnosine– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S18. SIC and tandem mass spectrum of modified ${}^{70}\underline{\mathbf{K}}\text{IIAE}{}^{75}\text{K}$ at K70 by carnosine– d_0 -ONE MA (1nd trace and 1st spectrum) or carnosine– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S19. SIC and tandem mass spectrum of modified ${}^{76}T\underline{K}IPAVF^{83}K$ at K77 by carnosine– d_0 -ONE MA (1nd trace and 1st spectrum) or carnosine– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S20. SIC and tandem mass spectrum of modified ¹³⁶FD<u>K</u>AL¹⁴¹K at K138 by carnosine– d_0 -ONE MA (1nd trace and 1st spectrum) or carnosine– d_9 -ONE MA (2rd trace and 2nd spectrum).

Figure S21. SIC and tandem mass spectrum of modified ¹⁴²ALPM<u>H</u>I¹⁴⁸R at H146 by carnosine– d_0 -ONE MA (1nd trace and 1st spectrum) or carnosine– d_9 -ONE MA (2rd trace and 2nd spectrum).