## **SUPPORTING INFORMATION** for:

## A Solid-State <sup>11</sup>B NMR and Computational Study of Boron Electric Field Gradient and Chemical Shift Tensors in Boronic Acids and Boronic Esters

Joseph W. E. Weiss and David L. Bryce\*

Department of Chemistry and Centre for Catalysis Research and Innovation

University of Ottawa

Ottawa, Ontario K1N 6N5, Canada

\* Author to whom correspondence should be addressed.

phone: 1-613-562-5800 ext 2018

fax: 1-613-562-5170

email: dbryce@uottawa.ca

Table S1. Calculated <sup>11</sup>B EFG parameters and CSA for compounds 1 to 10. <sup>a</sup>

|                |               |                  | B3LYP    |                |                  | RHF      |           | G             | GA revPB | E              |                      |
|----------------|---------------|------------------|----------|----------------|------------------|----------|-----------|---------------|----------|----------------|----------------------|
|                | Sample        | $C_{ m Q}$ / MHz | $\eta_O$ | $\Omega$ / ppm | $C_{ m Q}$ / MHz | $\eta_O$ | Ω/<br>ppm | $C_{Q}$ / MHz | $\eta_O$ | $\Omega$ / ppm | $\phi_{\text{CCBO}}$ |
| Boronic Acids  | 1             | 2.82             | 0.631    | 17.1           | 2.84             | 0.614    | 16.6      | 2.83          | 0.644    | 21.9           | 0.0                  |
|                | $1^{\dagger}$ | 2.61             | 0.494    | 22.0           | 3.09             | 0.419    | 20.1      | 2.81          | 0.570    | 25.0           | 8.7                  |
|                | 2             | 2.92             | 0.439    | 36.0           | 2.90             | 0.422    | 34.7      | 2.96          | 0.383    | 43.7           | 90.0                 |
|                | $2^{\dagger}$ | 2.86             | 0.302    | 38.4           | 2.88             | 0.288    | 38.0      | 2.91          | 0.380    | 41.8           | 90.0                 |
|                | 3             | 2.23             | 0.922    | 16.6           | 2.42             | 0.782    | 17.0      | 2.81          | 0.504    | 33.4           | 28.1                 |
|                | $3^{\dagger}$ | 2.80             | 0.338    | 22.7           | 2.79             | 0.339    | 22.4      | 2.74          | 0.362    | 27.7           | 0.1                  |
|                | 4             | 2.78             | 0.466    | 13.8           | 3.34             | 0.364    | 10.3      | 2.68          | 0.447    | 18.7           | 0.0                  |
|                | $4^{\dagger}$ | 2.76             | 0.561    | 22.4           | 3.32             | 0.426    | 18.7      | 2.68          | 0.553    | 23.4           | 0.0                  |
|                | 5             | 2.07             | 0.548    | 15.8           | 2.11             | 0.377    | 17.2      | 2.84          | 0.524    | 32.6           | 36.7                 |
|                | $5^{\dagger}$ | 2.43             | 0.449    | 24.7           | 2.43             | 0.449    | 24.8      | 2.68          | 0.537    | 28.1           | 19.9                 |
| Boronic Esters | 6             | 2.72             | 0.621    | 17.0           | 2.72             | 0.624    | 16.0      | 2.62          | 0.649    | 23.9           | 0.5                  |
|                | 7             | 2.78             | 0.582    | 11.5           | 2.79             | 0.574    | 10.8      | 2.72          | 0.545    | 11.5           | 3.0                  |
|                | 8             | 2.79             | 0.640    | 15.5           | 2.80             | 0.638    | 15.4      | 2.71          | 0.632    | 15.5           | 2.9                  |
|                | 9             | 2.62             | 0.677    | 12.0           | 3.09             | 0.586    | 17.6      | 2.73          | 0.592    | 14.0           | 1.2                  |
|                | 10            | 2.10             | 0.186    | 15.5           | 2.14             | 0.274    | 16.7      | 2.74          | 0.529    | 32.3           | 61.3                 |
| Boric Acid     |               | 2.30             | 0.249    | 10.7           | 2.90             | 0.183    | 7.9       | 2.24          | 0.300    | 11.4           | 0.0                  |

## †Corresponds to boronic acid dimer

Calculated boron  $C_Q$ ,  $\eta_Q$ , and  $\Omega$  values for each boronic acid and ester compound studied. Calculated values for boronic acid dimers which take into account hydrogen bonding interactions are included where applicable. Hybrid DFT calculations were performed using the B3LYP functional and the 6-31G\* basis set on all first and second row elements, while the aug-cc-pVTZ basis set was used on all heavier elements. RHF calculations were performed using the 6-31G\* basis set on all first and second row elements, while the aug-cc-pVTZ basis set was used on all heavier elements. ADF calculations were performed using the GGA revPBE functional and TZP basis set on all atoms.  $\phi_{CCBO}$  is shown (see Figure 18). Boric acid is included as the impurity present at 19.6 ppm in compounds 2 and 3.

**Table S2.** Calculated magnetic shielding tensor skew and Euler angles for compounds **1** to **10** using two different basis sets.<sup>a</sup>

|                |               | В     | 3LYP |    |     | RI    | HF     |     |
|----------------|---------------|-------|------|----|-----|-------|--------|-----|
|                | Sample        | К     | α    | β  | γ   |       | α β    | γ   |
| Boronic Acids  | 1             | 0.79  | 295  | 0  | 82  | 0.78  | 283 0  | 98  |
|                | $1^{\dagger}$ | -0.19 | 136  | 16 | 246 | -0.60 | 300 16 | 71  |
|                | 2             | 0.47  | 236  | 0  | 214 | 0.36  | 180 0  | 270 |
|                | $2^{\dagger}$ | 0.15  | 2    | 0  | 143 | 0.09  | 353 0  | 151 |
|                | 3             | 0.54  | 357  | 14 | 77  | 0.43  | 355 15 | 78  |
|                | $3^{\dagger}$ | -0.50 | 319  | 0  | 169 | -0.48 | 314 0  | 173 |
|                | 4             | -0.96 | 24   | 0  | 90  | -0.81 | 217 90 | 270 |
|                | $4^{\dagger}$ | -0.27 | 306  | 90 | 90  | -0.12 | 121 90 | 270 |
|                | 5             | 0.85  | 2    | 18 | 69  | 0.85  | 2 17   | 74  |
|                | $5^{\dagger}$ | -0.35 | 133  | 19 | 254 | -0.34 | 133 18 | 253 |
| Boronic Esters | 6             | 0.63  | 270  | 1  | 180 | 0.67  | 90 1   | 360 |
|                | 7             | 0.00  | 359  | 0  | 1   | -0.29 | 0 2    | 360 |
|                | 8             | -0.84 | 77   | 0  | 282 | -0.96 | 268 89 | 91  |
|                | 9             | -0.45 | 164  | 2  | 197 | -0.58 | 91 90  | 268 |
|                | 10            | 0.84  | 184  | 9  | 175 | 0.86  | 5 9    | 354 |
| Boric Acid     |               | -0.68 | 151  | 0  | 203 | -0.78 | 84 90  | 270 |

†Corresponds to boronic acid dimer

Calculated boron Euler angles, which represent the corresponding angles between the EFG and shielding tensor components in their respective PASs, and κ values for each boronic acid and ester compound studied. Calculated values for boronic acid dimers which take into account hydrogen bonding interactions are included where applicable. Hybrid DFT calculations were performed using the B3LYP functional and the 6-31G\* basis set on all first and second row elements, while the aug-cc-pVTZ basis set was used on all heavier elements. RHF calculations were performed using the 6-31G\* basis set on all first and second row elements, while the aug-cc-pVTZ basis set was used on all heavier elements. ADF calculations were performed using the GGA revPBE functional and TZP basis set on all atoms. Boric acid is included as the impurity present at 19.6 ppm in compounds 2 and 3.

**Table S3.** Calculated magnetic shielding tensor skew and Euler angles for compounds **1** to **10** using a single basis set on all atoms.<sup>a</sup>

|                |               | В     | 3LYP |    |     |       | RHF |    |     |
|----------------|---------------|-------|------|----|-----|-------|-----|----|-----|
|                | Sample        | к     | α    | β  | γ   | κ     | α   | β  | γ   |
| Boronic Acids  | 1             | 0.81  | 6    | 0  | 11  | 0.15  | 276 | 0  | 90  |
|                | $1^{\dagger}$ | 0.24  | 182  | 8  | 201 | 0.05  | 242 | 7  | 62  |
|                | 2             | 0.44  | 223  | 0  | 227 | 0.69  | 178 | 0  | 272 |
|                | $2^{\dagger}$ | 0.0   | 326  | 0  | 187 | 0.22  | 87  | 0  | 68  |
|                | 3             | 0.24  | 356  | 6  | 76  | 0.37  | 41  | 0  | 89  |
|                | $3^{\dagger}$ | -0.24 | 156  | 0  | 254 | 0.01  | 154 | 0  | 249 |
|                | 4             | -0.87 | 200  | 0  | 276 | -0.76 | 217 | 90 | 270 |
|                | $4^{\dagger}$ | -0.38 | 127  | 90 | 270 | -0.14 | 209 | 90 | 90  |
|                | 5             | 0.64  | 177  | 16 | 275 | 0.73  | 175 | 13 | 294 |
|                | $5^{\dagger}$ | -0.36 | 131  | 12 | 253 | -0.15 | 219 | 13 | 306 |
| Boronic Esters | 6             | 0.71  | 90   | 1  | 0   | 0.44  | 90  | 3  | 90  |
|                | 7             | 0.23  | 0    | 1  | 360 | -0.93 | 0   | 1  | 360 |
|                | 8             | -0.58 | 30   | 1  | 329 | -0.57 | 268 | 90 | 90  |
|                | 9             | -0.20 | 111  | 1  | 251 | -0.79 | 91  | 88 | 269 |
|                | 10            | 0.88  | 342  | 5  | 66  | 0.44  | 347 | 8  | 12  |
| Boric Acid     |               | -0.69 | 241  | 0  | 112 | -0.67 | 264 | 90 | 90  |

<sup>†</sup>Corresponds to boronic acid dimer

<sup>&</sup>lt;sup>a</sup> Calculated boron κ and Euler angles for each boronic acid and ester compound studied. Calculated values for boronic acid dimers which take into account hydrogen bonding interactions are included where applicable. Hybrid DFT calculations were performed using the B3LYP functional and the 6-311+G\* basis set on all elements. RHF calculations were performed using the 6-311+G\* basis set on elements. ADF calculations were performed using the GGA revPBE functional and TZP basis set on all atoms. Boric acid is included as the impurity present at 19.6 ppm in compounds 2 and 3.

Table S4. Calculated magnetic shielding tensor components for compounds 1 to 10.<sup>a</sup>

| Boronic Acids                                 |                 | 1             |               |                       |                 | 2             |               |                       |                 | 3             |               |                       |               | 4             |               |                       |                 | 5             |               |                       |
|-----------------------------------------------|-----------------|---------------|---------------|-----------------------|-----------------|---------------|---------------|-----------------------|-----------------|---------------|---------------|-----------------------|---------------|---------------|---------------|-----------------------|-----------------|---------------|---------------|-----------------------|
| Contribution                                  | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | $\sigma_{11}$ | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ |
| $\sigma^{\text{d}} \text{(Core Density)}$     | 163.9           | 164.1         | 164.3         | 164.1                 | 163.4           | 164.2         | 164.7         | 164.1                 | 163.8           | 164.2         | 164.4         | 164.1                 | 163.8         | 164.2         | 164.3         | 164.1                 | 163.8           | 164.1         | 164.4         | 164.1                 |
| $\sigma^{\text{d}}  \text{(Valence Density)}$ | -0.5            | 33.6          | 38.3          | 23.8                  | 8.5             | 29.5          | 34.5          | 24.2                  | -0.5            | 32.8          | 39.1          | 23.8                  | 4.2           | 32.9          | 40.9          | 24.6                  | 3.1             | 34.2          | 39.6          | 25.6                  |
| $\sigma^{d}$                                  | 163.4           | 197.7         | 202.6         | 187.9                 | 171.9           | 193.7         | 199.2         | 188.3                 | 163.3           | 197.0         | 203.5         | 187.9                 | 168.0         | 197.1         | 205.2         | 188.7                 | 166.9           | 198.3         | 204.0         | 189.8                 |
| $\sigma^p$ (OCC-OCC)                          | 22.9            | 28.6          | 162.0         | 71.2                  | 16.4            | 62.2          | 101.6         | 60.1                  | 10.8            | 21.0          | 132.9         | 54.9                  | 12.3          | 22.6          | 138.4         | 57.8                  | 14.5            | 19.4          | 123.7         | 52.5                  |
| $\sigma^p$ (OCC-VIR)                          | -307.6          | -177.8        | -156.6        | -214.0                | -273.5          | -157.0        | -138.2        | -189.6                | -251.8          | -161.9        | -138.7        | -184.1                | -267.3        | -163.6        | -143.8        | -191.5                | -248.7          | -157.9        | -143.7        | -183.4                |
| $\sigma^{p}$                                  | -142.0          | -128.7        | -81.3         | -117.4                | -143.6          | -125.9        | -80.0         | -116.5                | -141.1          | -127.6        | -79.4         | -116.1                | -142.3        | -125.8        | -94.0         | -120.7                | -141.8          | -127.9        | -82.4         | -117.4                |
| Total                                         | 57.5            | 71.6          | 82.5          | 70.6                  | 51.4            | 70.8          | 93.2          | 71.8                  | 56.2            | 75.6          | 83.8          | 71.9                  | 55.4          | 69.8          | 78.8          | 68.0                  | 57.2            | 74.5          | 85.3          | 72.4                  |

<sup>\*</sup>Boronic acid calculations are performed on the dimer

| Boronic Esters                                |                 | 6             |               |                       |                 | 7             |               |                       |                 | 8             |               |                       |                 | 9             |               |                       |                 | 10            |               |                       |
|-----------------------------------------------|-----------------|---------------|---------------|-----------------------|-----------------|---------------|---------------|-----------------------|-----------------|---------------|---------------|-----------------------|-----------------|---------------|---------------|-----------------------|-----------------|---------------|---------------|-----------------------|
| Contribution                                  | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ |
| $\sigma^{\text{d}}(\text{Core Density})$      | 163.8           | 164.1         | 164.4         | 164.1                 | 163.8           | 164.1         | 164.4         | 164.1                 | 163.8           | 164.1         | 164.4         | 164.1                 | 163.8           | 164.1         | 164.4         | 164.1                 | 163.9           | 164.1         | 164.4         | 164.1                 |
| $\sigma^{\text{d}}  \text{(Valence Density)}$ | 3.0             | 35.1          | 40.0          | 26.0                  | 3.0             | 36.5          | 38.1          | 25.9                  | 2.5             | 36.5          | 38.1          | 25.7                  | 2.7             | 36.7          | 37.6          | 25.7                  | 6.6             | 34.9          | 36.0          | 25.8                  |
| $\sigma^{d}$                                  | 166.8           | 199.2         | 204.4         | 190.1                 | 166.8           | 200.6         | 202.5         | 190.0                 | 166.3           | 200.6         | 202.5         | 189.8                 | 166.5           | 200.8         | 202.0         | 189.8                 | 170.5           | 199.0         | 200.4         | 190.0                 |
| $\sigma^p$ (OCC-OCC)                          | 24.3            | 24.7          | 89.2          | 46.0                  | 31.2            | 33.0          | 96.1          | 53.4                  | 30.4            | 33.0          | 98.7          | 54.0                  | 31.5            | 43.3          | 93.8          | 56.2                  | 28.8            | 49.0          | 87.7          | 55.2                  |
| $\sigma^{p} \ (\text{OCC-VIR})$               | -200.6          | -170.4        | -161.8        | -177.6                | -220.7          | -189.5        | -168.4        | -192.9                | -226.0          | -191.4        | -165.4        | -194.3                | -219.1          | -205.9        | -167.4        | -197.5                | -227.9          | -182.3        | -166.8        | -192.3                |
| $\sigma^{p}$                                  | -135.7          | -132.7        | -79.3         | -115.9                | -137.2          | -133.2        | -90.3         | -120.2                | -142.3          | -129.0        | -91.0         | -120.7                | -139.1          | -131.4        | -90.0         | -120.2                | -140.0          | -134.1        | -79.4         | -117.8                |
| Total                                         | 63.7            | 71.4          | 87.6          | 74.2                  | 65.1            | 67.8          | 76.5          | 69.8                  | 59.8            | 71.9          | 75.4          | 69.0                  | 62.6            | 69.7          | 76.5          | 69.6                  | 59.9            | 64.3          | 92.2          | 72.1                  |

<sup>&</sup>lt;sup>a</sup> Calculated boron magnetic shielding tensor components for each boronic acid and ester compound studied. Calculated values for boronic acid dimers which take into account hydrogen bonding interactions were used for 1 to 5. ADF calculations were performed using the GGA revPBE functional and TZP basis set on all atoms.

Table S5. Calculated magnetic shielding tensor components for phenylboronic acid.<sup>a</sup>

| Dihedral                                      |                 | 0             |               |                       |                 | 10            |               |                       |                 | 20            |               |                       |               | 30            |               |                       |                 | 40            |               |                       |
|-----------------------------------------------|-----------------|---------------|---------------|-----------------------|-----------------|---------------|---------------|-----------------------|-----------------|---------------|---------------|-----------------------|---------------|---------------|---------------|-----------------------|-----------------|---------------|---------------|-----------------------|
| Contribution                                  | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | $\sigma_{11}$ | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ |
| $\sigma^{\text{d}}  (\text{Core Density})$    | 163.9           | 164.2         | 164.2         | 164.1                 | 163.9           | 164.2         | 164.3         | 164.1                 | 163.9           | 164.2         | 164.3         | 164.1                 | 163.9         | 164.2         | 164.3         | 164.1                 | 163.9           | 164.2         | 164.3         | 164.1                 |
| $\sigma^{\text{d}}  (\text{Valence Density})$ | 3.4             | 33.1          | 39.2          | 25.2                  | 3.7             | 33.2          | 39.2          | 25.3                  | 4.5             | 33.4          | 39.0          | 25.6                  | 5.8           | 33.8          | 38.6          | 26.1                  | 7.3             | 34.3          | 38.1          | 26.6                  |
| $\sigma^{\sf d}$                              | 167.3           | 197.3         | 203.4         | 189.3                 | 167.6           | 197.4         | 203.5         | 189.5                 | 168.4           | 197.6         | 203.3         | 189.8                 | 169.7         | 198.0         | 202.9         | 190.2                 | 171.2           | 198.5         | 202.4         | 190.7                 |
| $\sigma^p$ (OCC-OCC)                          | 7.7             | 18.5          | 33.4          | 19.9                  | 7.7             | 18.2          | 33.3          | 19.7                  | 7.5             | 17.3          | 33.1          | 19.3                  | 7.3           | 15.9          | 32.9          | 18.7                  | 7.3             | 14.3          | 32.7          | 18.1                  |
| $\sigma^p$ (OCC-VIR)                          | -154.7          | -143.4        | -129.5        | -142.6                | -154.7          | -145.3        | -128.1        | -142.7                | -154.4          | -149.3        | -125.3        | -143.0                | -153.9        | -153.5        | -122.6        | -143.4                | -157.2          | -153.5        | -120.5        | -143.7                |
| $\sigma^{p}$                                  | -136.2          | -135.7        | -81.7         | -117.9                | -136.4          | -136.4        | -81.7         | -118.2                | -138.1          | -137.0        | -81.9         | -119.0                | -140.3        | -137.9        | -82.2         | -120.1                | -142.3          | -139.0        | -82.6         | -121.3                |
| Total                                         | 61.2            | 67.7          | 85.6          | 71.5                  | 61.0            | 66.6          | 86.2          | 71.3                  | 60.7            | 64.0          | 87.5          | 70.7                  | 60.2          | 61.1          | 88.9          | 70.1                  | 58.5            | 59.5          | 90.1          | 69.4                  |
|                                               | i               |               |               |                       |                 |               |               |                       |                 |               |               |                       |               |               |               |                       |                 |               |               |                       |
| Dihedral                                      |                 | 50            |               |                       |                 | 60            |               |                       |                 | 70            |               |                       |               | 80            |               |                       |                 | 90            |               |                       |
| Contribution                                  | $\sigma_{11}$   | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | $\sigma_{11}$   | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | $\sigma_{11}$ | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ | σ <sub>11</sub> | $\sigma_{22}$ | $\sigma_{33}$ | $\sigma_{\text{iso}}$ |
| $\sigma^{\text{d}}  (\text{Core Density})$    | 163.9           | 164.2         | 164.3         | 164.1                 | 163.9           | 164.2         | 164.3         | 164.1                 | 163.9           | 164.2         | 164.3         | 164.1                 | 163.9         | 164.1         | 164.3         | 164.1                 | 163.9           | 164.1         | 164.3         | 164.1                 |
| $\sigma^{\text{d}}  (\text{Valence Density})$ | 8.9             | 34.7          | 37.5          | 27.1                  | 10.4            | 35.1          | 36.9          | 27.5                  | 11.7            | 35.5          | 36.3          | 27.8                  | 12.6          | 35.7          | 36.0          | 28.1                  | 12.9            | 35.7          | 35.8          | 28.1                  |
| $\sigma^{d}$                                  | 172.8           | 198.9         | 201.8         | 191.2                 | 174.3           | 199.3         | 201.2         | 191.6                 | 175.6           | 199.7         | 200.6         | 191.9                 | 176.5         | 199.8         | 200.3         | 192.2                 | 176.8           | 199.8         | 200.1         | 192.3                 |
| $\sigma^p$ (OCC-OCC)                          | 7.3             | 12.6          | 32.5          | 17.5                  | 7.4             | 11.1          | 32.4          | 17.0                  | 7.5             | 10.0          | 32.3          | 16.6                  | 7.6           | 9.3           | 32.2          | 16.4                  | 7.7             | 9.1           | 32.2          | 16.3                  |
| $\sigma^p$ (OCC-VIR)                          | -159.9          | -153.1        | -118.8        | -143.9                | -161.7          | -152.8        | -117.6        | -144.0                | -162.9          | -152.7        | -116.9        | -144.1                | -163.5        | -152.6        | -116.4        | -144.2                | -163.6          | -152.6        | -116.2        | -144.2                |
| $\sigma^{p}$                                  | -143.7          | -140.2        | -83.0         | -122.3                | -144.6          | -141.4        | -83.4         | -123.1                | -145.0          | -142.4        | -83.6         | -123.7                | -145.2        | -143.0        | -83.8         | -124.0                | -145.2          | -143.3        | -83.8         | -124.1                |
| Total                                         | 56.7            | 58.8          | 91.0          | 68.8                  | 55.6            | 58.0          | 91.8          | 68.5                  | 55.0            | 57.4          | 92.4          | 68.3                  | 54.8          | 56.9          | 92.8          | 68.2                  | 54.8            | 56.7          | 93.0          | 68.2                  |

<sup>&</sup>lt;sup>a</sup> Calculated boron magnetic shielding tensor components for phenylboronic acid as  $\phi_{CCBO}$  is varied from 0 to 90 degrees. ADF calculations were performed using the GGA revPBE functional and TZP basis set on all atoms.

**Table S6.** Calculated magnetic shielding tensor components and  $\Omega$  for phenylboronic acid monomer and dimer as the dihedral is varied from 0 to 90°.

|                              |               | Monomer <sup>b</sup> |               |                |               | Dimer <sup>b</sup> |               |                |
|------------------------------|---------------|----------------------|---------------|----------------|---------------|--------------------|---------------|----------------|
| <i>φ</i> <sub>CCBO</sub> / ° | $\sigma_{11}$ | $\sigma_{22}$        | $\sigma_{33}$ | $\Omega$ / ppm | $\sigma_{11}$ | $\sigma_{22}$      | $\sigma_{33}$ | $\Omega$ / ppm |
| 0                            | 61.2          | 67.7                 | 85.6          | 24.4           | 56.9          | 72.5               | 83.0          | 26.1           |
| 10                           | 61.0          | 66.6                 | 86.2          | 25.2           | 56.2          | 71.9               | 83.7          | 27.5           |
| 20                           | 60.7          | 64.0                 | 87.5          | 26.8           | 54.8          | 69.9               | 85.3          | 30.5           |
| 30                           | 60.2          | 61.0                 | 88.9          | 28.7           | 53.1          | 67.6               | 86.8          | 33.7           |
| 40                           | 58.5          | 59.5                 | 90.1          | 31.6           | 51.5          | 65.5               | 88.1          | 36.6           |
| 50                           | 56.7          | 58.8                 | 91.0          | 34.3           | 50.4          | 63.7               | 89.2          | 38.8           |
| 60                           | 55.6          | 58.0                 | 91.8          | 36.2           | 49.8          | 62.2               | 90.3          | 40.5           |
| 70                           | 55.0          | 57.4                 | 92.4          | 37.4           | 49.7          | 60.9               | 91.2          | 41.5           |
| 80                           | 54.8          | 56.9                 | 92.8          | 38.0           | 49.9          | 59.9               | 91.9          | 42.0           |
| 90                           | 54.8          | 56.7                 | 93.0          | 38.2           | 50.3          | 29.2               | 92.3          | 42.0           |

|                                |               | $Monomer^{c}$ |               |                |               | Dimer <sup>c</sup> |               |                |
|--------------------------------|---------------|---------------|---------------|----------------|---------------|--------------------|---------------|----------------|
| $\phi_{\rm CCBO}$ / $^{\circ}$ | $\sigma_{11}$ | $\sigma_{22}$ | $\sigma_{33}$ | $\Omega$ / ppm | $\sigma_{11}$ | $\sigma_{22}$      | $\sigma_{33}$ | $\Omega$ / ppm |
| 0                              | 80.1          | 80.1          | 97.8          | 17.7           | 73.3          | 87.9               | 96.1          | 22.8           |
| 10                             | 79.8          | 80.0          | 98.1          | 18.3           | 72.7          | 87.5               | 96.8          | 24.1           |
| 20                             | 79.1          | 79.9          | 98.7          | 19.6           | 71.3          | 86.1               | 98.3          | 27.0           |
| 30                             | 78.2          | 79.6          | 99.6          | 21.4           | 69.7          | 84.6               | 99.9          | 30.2           |
| 40                             | 77.3          | 79.3          | 100.5         | 23.2           | 68.3          | 83.1               | 101.2         | 32.9           |
| 50                             | 76.5          | 78.9          | 101.4         | 24.9           | 67.3          | 81.8               | 102.3         | 35.0           |
| 60                             | 75.7          | 78.6          | 102.5         | 26.8           | 66.9          | 80.4               | 103.4         | 36.5           |
| 70                             | 74.9          | 78.2          | 103.8         | 28.9           | 66.8          | 79.2               | 104.4         | 37.6           |
| 80                             | 74.1          | 77.7          | 105.3         | 31.2           | 67.0          | 78.1               | 105.0         | 38.0           |
| 90                             | 73.1          | 77.1          | 106.9         | 33.8           | 67.5          | 77.2               | 105.3         | 37.8           |

<sup>&</sup>lt;sup>a</sup> Calculated boron  $\phi_{\text{CCBO}}$ ,  $\Omega$ , and shielding tensor components for phenylboronic acid monomer and dimer as  $\phi_{\text{CCBO}}$  is varied from 0 to 90°.

<sup>&</sup>lt;sup>b</sup> Hybrid DFT calculations were performed using the B3LYP functional and the 6-31G\* basis set on all first and second row elements, while the aug-cc-pVTZ basis set was used on all heavier elements.

<sup>&</sup>lt;sup>c</sup> ADF calculations were performed using the GGA revPBE functional and TZP basis set on all atoms.

**Table S7.** Calculated magnetic shielding tensor components with the largest contribution to total isotropic  $\sigma_{para}$  for a given set of occupied and virtual MOs for compounds 1 to 10.<sup>a</sup>

| Compound | MOs (OCC-VIR) | $\sigma_{11}^{b}$ | $\sigma_{22}^{b}$ | $\sigma_{33}^{b}$ | $\sigma_{\text{iso}}$ | ΔΕ     | $\phi_{ m CCBO}$ / $^{\circ}$ | $\Omega$ / ppm |
|----------|---------------|-------------------|-------------------|-------------------|-----------------------|--------|-------------------------------|----------------|
| 1        | 102-201       | 0                 | 0                 | -6                | -2                    | 0.4615 | 8.7                           | 25.0           |
| 2        | 43-70         | -2                | -58               | 0                 | -20                   | 0.3156 | 90.0                          | 41.8           |
| 3        | 42-75         | -8                | -8                | 0                 | -5                    | 0.4240 | 0.1                           | 27.7           |
| 4        | 45-67         | -6                | 0                 | -9                | -5                    | 0.3377 | 0.0                           | 23.4           |
| 5        | 49-81         | 0                 | -12               | 0                 | -4                    | 0.3887 | 19.9                          | 28.1           |
| 6        | 33-65         | 0                 | -16               | 0                 | -5                    | 0.4553 | 0.5                           | 23.9           |
| 7        | 39-74         | -17               | 0                 | 0                 | -5                    | 0.4379 | 3.0                           | 11.5           |
| 8        | 39-59         | -20               | 0                 | 0                 | -7                    | 0.3444 | 2.9                           | 15.5           |
| 9        | 46-70         | -12               | 0                 | 0                 | -4                    | 0.3389 | 1.2                           | 14.0           |
| 10       | 43-60         | 0                 | -7                | -5                | -4                    | 0.3290 | 61.3                          | 32.3           |

<sup>&</sup>lt;sup>a</sup> Calculated boron  $\phi_{CCBO}$ ,  $\Omega$ , shielding tensor components, and energy gap for each pair of occupied and virtual orbitals which have the largest contribution to total isotropic  $\sigma_{para}$  for each boronic acid and ester compound studied. The shielding tensor components are those for the given pair of MOs, and are not the total shielding values. Calculated values for boronic acid dimers which take into account hydrogen bonding interactions are included where applicable. ADF calculations were performed using the GGA revPBE functional and TZP basis set on all atoms.

<sup>&</sup>lt;sup>b</sup> Contributions (ppm) to shielding tensor principal components for a given pair of MOs which yield the largest contribution to total isotropic paramagnetic shielding.

**Table S8.** Calculated magnetic shielding tensor components with the largest contribution to total isotropic  $\sigma_{para}$  for a given set of occupied and virtual MOs for phenylboronic acid.<sup>a</sup>

| Dihedral | MOs (OCC-VIR) | $\sigma_{11}^{b}$ | $\sigma_{22}^{b}$ | $\sigma_{33}^{b}$ | $\sigma_{iso}$ | ΔΕ     | $\Omega$ / ppm |
|----------|---------------|-------------------|-------------------|-------------------|----------------|--------|----------------|
| 0        | 21-36         | 0                 | -45               | 0                 | -15            | 0.4316 | 24.39          |
| 10       | 21-36         | 0                 | -38               | -1                | -13            | 0.4285 | 25.71          |
| 20       | 21-36         | 0                 | -27               | -3                | -9             | 0.4215 | 26.80          |
| 30       | 21-36         | 0                 | -18               | -3                | -7             | 0.4139 | 28.69          |
| 40       | 18-58         | 0                 | -12               | -7                | -6             | 0.6885 | 31.56          |
| 50       | 9-27          | -19               | 0                 | 0                 | -6             | 0.5202 | 34.33          |
| 60       | 9-27          | -26               | 0                 | 0                 | -9             | 0.5165 | 36.22          |
| 70       | 9-27          | -32               | 0                 | 0                 | -11            | 0.5127 | 37.39          |
| 80       | 9-27          | 0                 | -36               | 0                 | -12            | 0.5098 | 38.01          |
| 90       | 9-27          | 0                 | -38               | 0                 | -13            | 0.5087 | 38.20          |

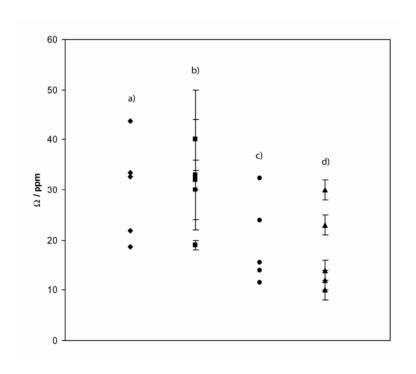
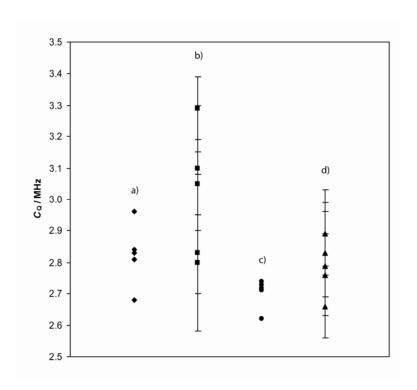
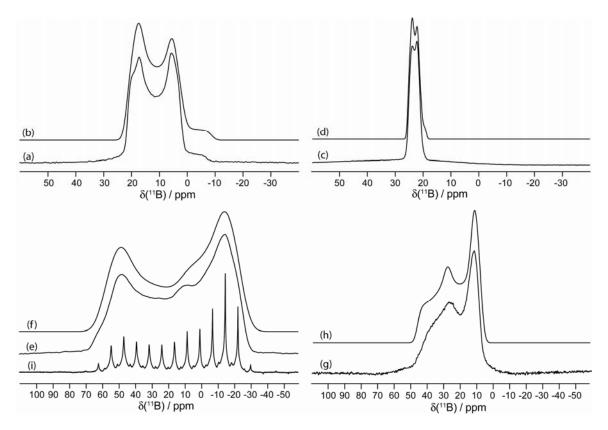
<sup>&</sup>lt;sup>a</sup> Calculated boron  $\phi_{CCBO}$ ,  $\Omega$ , and shielding tensor components and energy gap for each pair of occupied and virtual orbitals which have the largest contribution to total isotropic paramagnetic shielding for phenylboronic acid as the dihedral is varied from 0 to 90 degrees. ADF calculations were performed using the GGA revPBE functional and TZP basis set on all atoms.

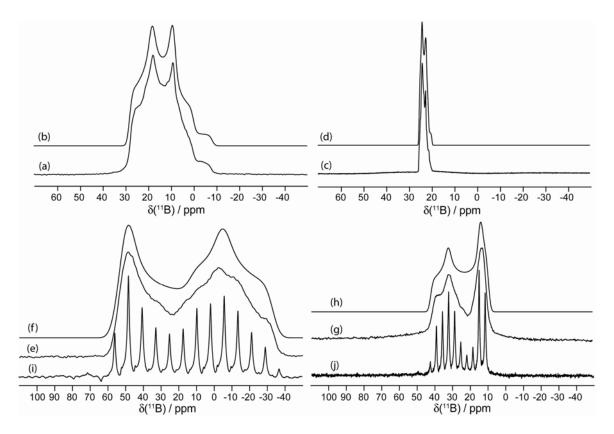
<sup>&</sup>lt;sup>b</sup> Contributions (ppm) to shielding tensor principal components for a given pair of MOs which yield the largest contribution to total isotropic paramagnetic shielding.

**Table S9.** Calculated  $\Omega$  and magnetic shielding tensor components for a series of steric, electron donating, and electron withdrawing groups substituted on phenylboronic acid.<sup>a</sup>

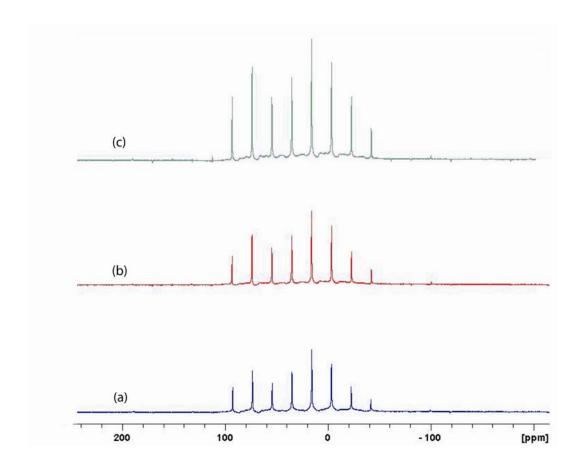
| Compound <sup>b</sup> | $\sigma_{11}^{d}$ | $\sigma_{22}^{d}$ | $\sigma_{33}^{d}$ | Total $\sigma_{para}$ | <u>σ<sub>11</sub></u> | $\sigma_{22}$ | $\sigma_{33}$ | Total $\sigma_{iso}$ | $\Omega$ / ppm |
|-----------------------|-------------------|-------------------|-------------------|-----------------------|-----------------------|---------------|---------------|----------------------|----------------|
| phenylboronic acid    | -136.2            | -135.7            | -81.7             | -117.9                | 61.2                  | 67.7          | 85.6          | 71.5                 | 24.4           |
| o-steric              | -138.9            | -132.2            | -81.5             | -117.5                | 58.7                  | 72.4          | 85.4          | 72.2                 | 26.7           |
| m-steric              | -136.3            | -134.4            | -80.9             | -117.2                | 60.4                  | 69.8          | 85.8          | 72.0                 | 25.4           |
| p-steric              | -136.8            | -134.4            | -81.2             | -117.5                | 61.0                  | 68.8          | 85.7          | 71.8                 | 24.7           |
| mild o-EWG            | -140.2            | -138.4            | -83.2             | -120.6                | 56.1                  | 58.3          | 93.9          | 69.4                 | 37.9           |
| mild m-EWG            | -137.1            | -133.4            | -81.3             | -117.3                | 60.1                  | 70.1          | 85.3          | 71.8                 | 25.3           |
| mild p-EWG            | -137.9            | -132.7            | -81.6             | -117.4                | 59.7                  | 70.5          | 85.4          | 71.9                 | 25.7           |
| strong o-EWG          | -140.4            | -133.7            | -83.9             | -119.3                | 56.4                  | 63.2          | 92.6          | 70.7                 | 36.2           |
| strong m-EWG          | -139.6            | -132.5            | -95.6             | -122.6                | 55.3                  | 60.1          | 92.8          | 69.4                 | 37.5           |
| strong p-EWG          | -144.8            | -140.7            | -83.2             | -122.9                | 55.3                  | 58.7          | 93.1          | 69.1                 | 37.8           |
| mild o-EDG            | -136.0            | -133.4            | -80.6             | -116.7                | 59.5                  | 70.5          | 86.4          | 72.2                 | 27.0           |
| mild m-EDG            | -135.9            | -133.6            | -81.8             | -117.1                | 59.9                  | 70.3          | 85.8          | 72.0                 | 25.8           |
| mild p-EDG            | -136.6            | -133.1            | -81.9             | -117.2                | 60.7                  | 69.8          | 85.6          | 72.0                 | 24.9           |
| strong o-EDG          | -140.7            | -132.4            | -82.9             | -118.7                | 61.4                  | 66.1          | 84.6          | 70.7                 | 23.2           |
| strong m-EDG          | -136.8            | -135.3            | -81.3             | -117.8                | 61.9                  | 66.8          | 85.7          | 71.4                 | 23.7           |
| strong p-EDG          | -137.8            | -133.8            | -81.6             | -117.7                | 63.9                  | 65.7          | 85.6          | 71.8                 | 21.7           |
|                       |                   |                   |                   |                       |                       |               |               |                      |                |
| Compound <sup>c</sup> | $\sigma_{11}^{d}$ | σ <sub>22</sub> d | $\sigma_{33}^{d}$ | Total $\sigma_{para}$ | $\sigma_{11}$         | $\sigma_{22}$ | $\sigma_{33}$ | Total $\sigma_{iso}$ | $\Omega$ / ppm |
| phenylboronic acid    | -136.2            | -135.7            | -81.7             | -117.9                | 61.2                  | 67.7          | 85.6          | 71.5                 | 24.4           |
| o-steric              | -137.8            | -134.1            | -81.6             | -117.8                | 58.9                  | 71.6          | 84.9          | 71.8                 | 26.1           |
| m-steric              | -136.6            | -134.8            | -81.1             | -117.5                | 60.5                  | 69.0          | 85.6          | 71.7                 | 25.1           |
| p-steric              | -136.7            | -134.8            | -81.3             | -117.6                | 61.2                  | 68.2          | 85.5          | 71.6                 | 24.4           |
| mild o-EWG            | -136.5            | -135.4            | -81.3             | -117.7                | 59.5                  | 70.2          | 85.6          | 71.8                 | 26.0           |
| mild m-EWG            | -137.1            | -133.8            | -81.4             | -117.4                | 60.2                  | 69.4          | 85.1          | 71.6                 | 25.0           |
| mild p-EWG            | -137.9            | -133.1            | -81.7             | -117.6                | 59.8                  | 69.8          | 85.2          | 71.6                 | 25.4           |
| strong o-EWG          | -137.2            | -133.9            | -80.1             | -117.1                | 58.5                  | 71.9          | 86.7          | 72.4                 | 28.2           |
| strong m-EWG          | -136.8            | -133.9            | -81.0             | -117.3                | 59.6                  | 70.2          | 85.7          | 71.8                 | 26.0           |
| strong p-EWG          | -137.8            | -132.6            | -81.3             | -117.2                | 59.9                  | 70.3          | 85.6          | 71.9                 | 25.6           |
| mild o-EDG            | -134.8            | -133.9            | -81.8             | -116.8                | 59.7                  | 70.3          | 85.7          | 71.9                 | 26.0           |
| mild m-EDG            | -136.1            | -134.0            | -82.0             | -117.4                | 60.0                  | 69.5          | 85.6          | 71.7                 | 25.6           |
| mild p-EDG            | -136.4            | -133.5            | -82.1             | -117.3                | 60.8                  | 69.2          | 85.4          | 71.8                 | 24.6           |
| strong o-EDG          | -140.9            | -132.2            | -82.1             | -118.4                | 61.9                  | 66.3          | 84.5          | 70.9                 | 22.7           |
| strong m-EDG          | -136.3            | -135.2            | -81.3             | -117.6                | 61.2                  | 67.8          | 85.5          | 71.5                 | 24.3           |
| strong p-EDG          | -135.9            | -135.5            | -81.8             | -117.7                | 61.7                  | 67.7          | 85.3          | 71.6                 | 23.6           |

Calculated boron  $\Omega$  and magnetic shielding tensor components for substituted phenylboronic acid. ADF calculations were performed using the GGA revPBE functional and TZP basis set on all atoms. Bromine was used as a steric group, carboxyl as a mild electron withdrawing group, nitro as a strong electron withdrawing group, carboxylic acid ester as a mild electron donating group, and amine as a strong electron donating group. Phenylboronic acid structure has been fully optimized. Phenylboronic acid structure has  $\phi_{CCBO}$  fixed at 0 degrees. Shielding tensor component which contributes to total isotropic paramagnetic shielding.

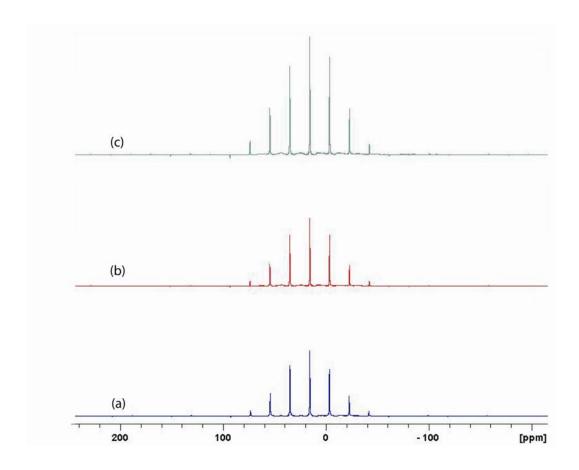






Figure S1. Calculated and experimental boron  $\Omega$  values for boronic acids and boronic esters studied. Calculated values for boronic acid dimers which take into account hydrogen bonding interactions are included where applicable. ADF calculations were performed using the GGA revPBE functional and TZP basis set on all atoms. The following data are shown: a) calculated  $\Omega$  values for boronic acids, b) experimental  $\Omega$  values for boronic acids, c) calculated  $\Omega$  values for boronic esters, and d) experimental  $\Omega$  values for boronic esters.

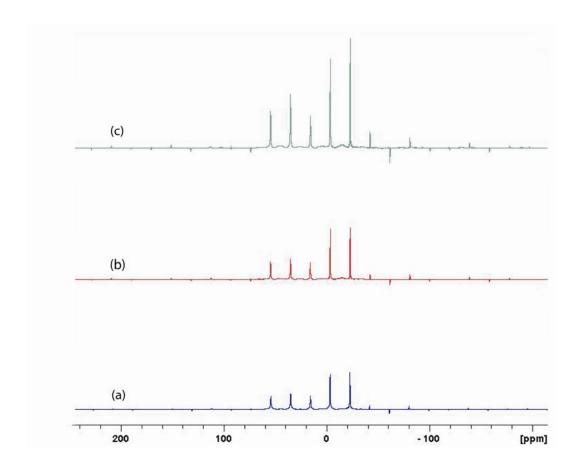



**Figure S2.** Calculated and experimental boron  $C_Q$  for boronic acids and boronic esters studied. Calculated values for boronic acid dimers which take into account hydrogen bonding interactions are included where applicable. ADF calculations were performed using the GGA revPBE functional and TZP basis set on all atoms. The following data are shown: a) calculated  $C_Q$  for boronic acids, b) experimental  $C_Q$  for boronic acids, c) calculated  $C_Q$  for boronic esters, and d) experimental  $C_Q$  for boronic esters.

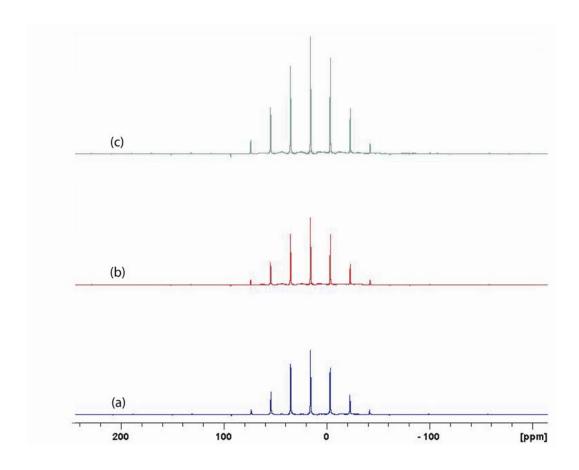



**Figure S3.** Solid-state boron-11 NMR spectroscopy of **5**. Experimental spectra of a powdered sample undergoing MAS are shown in (a) <sup>11</sup>B at 9.40 T and (c) <sup>11</sup>B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (b) and (d)) using the parameters given in Table 1. Experimental spectra of stationary powdered samples are shown in (e) <sup>11</sup>B at 9.40 T and (g) <sup>11</sup>B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (f) and (h)) using the parameters given in Table 1. Experimental QCPMG spectrum of a stationary powdered sample is shown in (i) <sup>11</sup>B at 9.40 T.

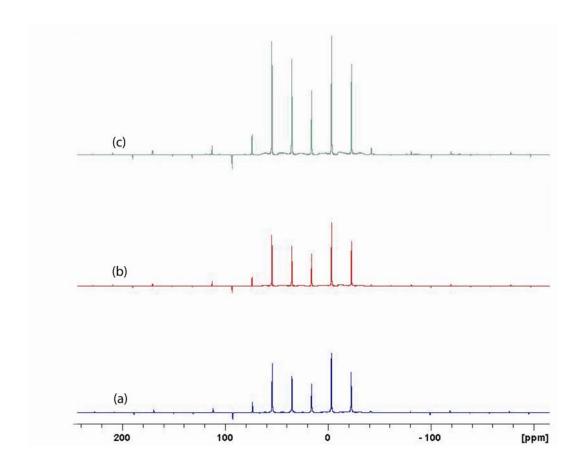



**Figure S4.** Solid-state boron-11 NMR spectroscopy of **6.** Experimental spectra of a powdered sample undergoing MAS are shown in (a) <sup>11</sup>B at 9.40 T and (c) <sup>11</sup>B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (b) and (d)) using the parameters given in Table 1. Experimental spectra of stationary powdered samples are shown in (e) <sup>11</sup>B at 9.40 T and (g) <sup>11</sup>B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (f) and (h)) using the parameters given in Table 1. Experimental QCPMG spectra of stationary powdered samples are shown in (i) <sup>11</sup>B at 9.40 T and (j) <sup>11</sup>B at 21.1 T.

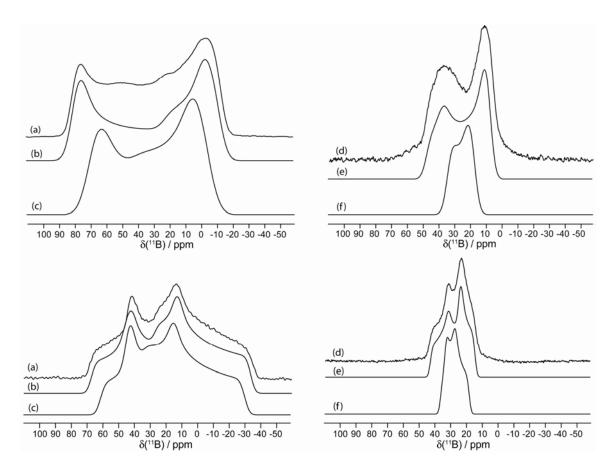



**Figure S5.** Solid-state boron NMR spectroscopy of **1**. Experimental <sup>11</sup>B spectra of stationary powdered samples at 9.40 T are shown in (a) using the QCPMG pulse sequence, (b) using the modified-QCPMG pulse sequence with a signal enhancement factor of 1.18, and (c) using the DFS modified-QCPMG pulse sequence with a signal enhancement factor of 1.96 relative to QCPMG. Spikelets are separated by 2500 Hz.

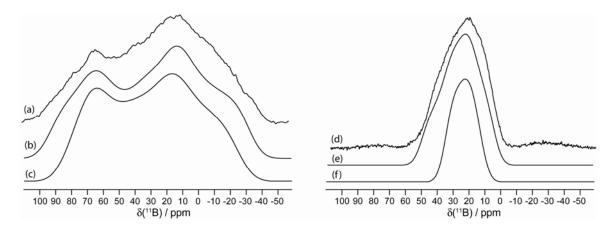



**Figure S6.** Solid-state boron NMR spectroscopy of **2**. Experimental <sup>11</sup>B spectra of stationary powdered samples at 9.40 T are shown in (a) using the QCPMG pulse sequence, (b) using the modified-QCPMG pulse sequence with a signal enhancement factor of 1.05, and (c) using the DFS modified-QCPMG pulse sequence with a signal enhancement factor of 1.85 relative to QCPMG. Spikelets are separated by 2500 Hz.

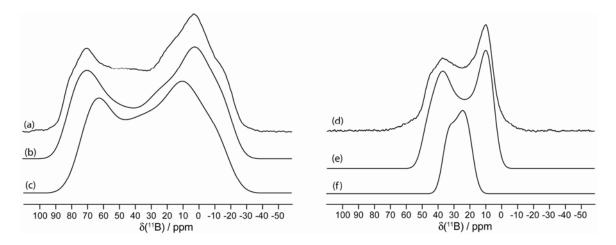



**Figure S7.** Solid-state boron NMR spectroscopy of **5**. Experimental <sup>11</sup>B spectra of stationary powdered samples at 9.40 T are shown in (a) using the QCPMG pulse sequence, (b) using the modified-QCPMG pulse sequence with a signal enhancement factor of 1.42, and (c) using the DFS modified-QCPMG pulse sequence with a signal enhancement factor of 2.95 relative to QCPMG. Spikelets are separated by 2500 Hz.

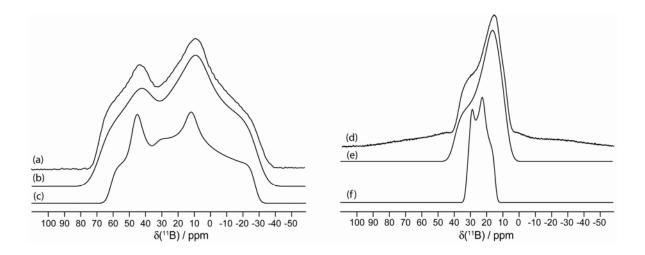



**Figure S8.** Solid-state boron NMR spectroscopy of **8**. Experimental <sup>11</sup>B spectra of stationary powdered samples at 9.40 T are shown in (a) using the QCPMG pulse sequence, (b) using the modified-QCPMG pulse sequence with a signal enhancement factor of 1.05, and (c) using the DFS modified-QCPMG pulse sequence with a signal enhancement factor of 1.80 relative to QCPMG. Spikelets are separated by 2500 Hz.




**Figure S9.** Solid-state boron NMR spectroscopy of **10**. Experimental <sup>11</sup>B spectra of stationary powdered samples at 9.40 T are shown in (a) using the QCPMG pulse sequence, (b) using the modified-QCPMG pulse sequence with a signal enhancement factor of 1.09, and (c) using the DFS modified-QCPMG pulse sequence with a signal enhancement factor of 2.04 relative to QCPMG. Spikelets are separated by 2500 Hz.

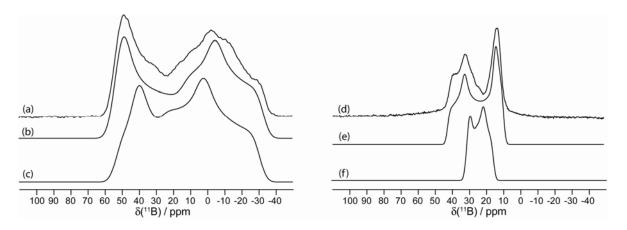



**Figure S10.** Solid-state boron-11 NMR spectroscopy of **3** (top), and **8** (bottom). Experimental spectra of stationary powdered samples are shown in (a) <sup>11</sup>B at 9.40 T and (d) <sup>11</sup>B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (b) and (e)) using the parameters given in Table 1. Best-fit spectra not taking the effects of CSA into account were simulated using WSolids (traces (c) and (f)) using the parameters given in Table 1, but where the values for span were set to 0 ppm.

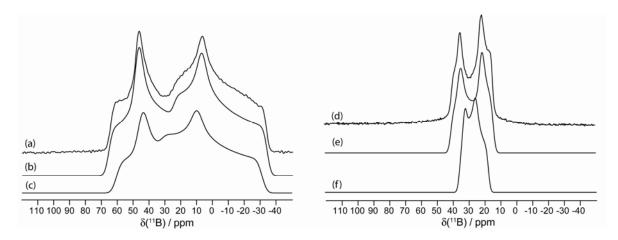



**Figure S11.** Solid-state boron-11 NMR spectroscopy of **1**. Experimental spectra of stationary powdered samples are shown in (a)  $^{11}$ B at 9.40 T and (d)  $^{11}$ B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (b) and (e)) using the parameters given in Table 1. Best-fit spectra not taking the effects of CSA into account were simulated using WSolids (traces (c) and (f)) using the parameters given in Table 1, but where the values for  $\Omega$  were set to 0 ppm.

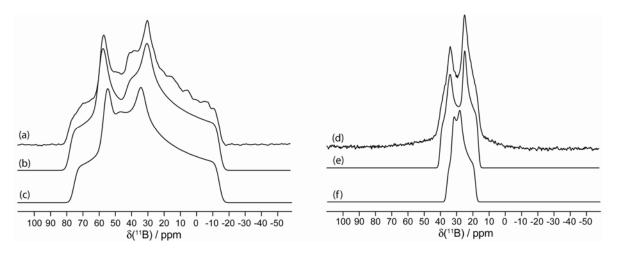



**Figure S12.** Solid-state boron-11 NMR spectroscopy of **2**. Experimental spectra of stationary powdered samples are shown in (a)  $^{11}$ B at 9.40 T and (d)  $^{11}$ B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (b) and (e)) using the parameters given in Table 1. Best-fit spectra not taking the effects of CSA into account were simulated using WSolids (traces (c) and (f)) using the parameters given in Table 1, but where the values for  $\Omega$  were set to 0 ppm.

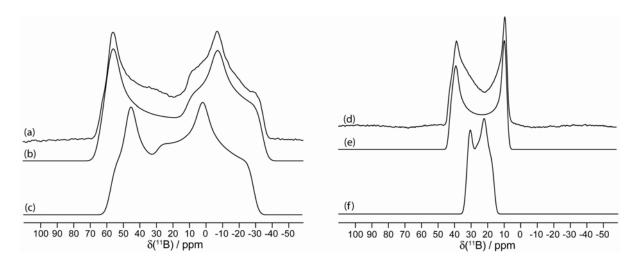



**Figure S13.** Solid-state boron-11 NMR spectroscopy of **4**. Experimental spectra of stationary powdered samples are shown in (a)  $^{11}$ B at 9.40 T and (d)  $^{11}$ B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (b) and (e)) using the parameters given in Table 1. Best-fit spectra not taking the effects of CSA into account were simulated using WSolids (traces (c) and (f)) using the parameters given in Table 1, but where the values for Ω were set to 0 ppm.




**Figure S14.** Solid-state boron-11 NMR spectroscopy of **5**. Experimental spectra of stationary powdered samples are shown in (a)  $^{11}$ B at 9.40 T and (d)  $^{11}$ B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (b) and (e)) using the parameters given in Table 1. Best-fit spectra not taking the effects of CSA into account were simulated using WSolids (traces (c) and (f)) using the parameters given in Table 1, but where the values for  $\Omega$  were set to 0 ppm.




**Figure S15.** Solid-state boron-11 NMR spectroscopy of **6**. Experimental spectra of stationary powdered samples are shown in (a)  $^{11}$ B at 9.40 T and (d)  $^{11}$ B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (b) and (e)) using the parameters given in Table 1. Best-fit spectra not taking the effects of CSA into account were simulated using WSolids (traces (c) and (f)) using the parameters given in Table 1, but where the values for  $\Omega$  were set to 0 ppm.



**Figure S16.** Solid-state boron-11 NMR spectroscopy of **7**. Experimental spectra of stationary powdered samples are shown in (a)  $^{11}$ B at 9.40 T and (d)  $^{11}$ B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (b) and (e)) using the parameters given in Table 1. Best-fit spectra not taking the effects of CSA into account were simulated using WSolids (traces (c) and (f)) using the parameters given in Table 1, but where the values for  $\Omega$  were set to 0 ppm.



**Figure S17.** Solid-state boron-11 NMR spectroscopy of **9**. Experimental spectra of stationary powdered samples are shown in (a)  $^{11}$ B at 9.40 T and (d)  $^{11}$ B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (b) and (e)) using the parameters given in Table 1. Best-fit spectra not taking the effects of CSA into account were simulated using WSolids (traces (c) and (f)) using the parameters given in Table 1, but where the values for  $\Omega$  were set to 0 ppm.



**Figure S18.** Solid-state boron-11 NMR spectroscopy of **10**. Experimental spectra of stationary powdered samples are shown in (a)  $^{11}$ B at 9.40 T and (d)  $^{11}$ B at 21.1 T. Best-fit spectra were simulated using WSolids (traces (b) and (e)) using the parameters given in Table 1. Best-fit spectra not taking the effects of CSA into account were simulated using WSolids (traces (c) and (f)) using the parameters given in Table 1, but where the values for  $\Omega$  were set to 0 ppm.