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Abstract

In this supplement to the paper by Liang et al. (2009), we provide full details of the Monte

Carlo algorithms needed to approximate the complex point process likelihoods in the paper. In

particular, we flesh out the details of our knot-based predictive process approximation, and give

general guidelines for how the knots should be selected in any given application.

The likelihoods in the main paper require us to integrate the intensity function over D, which is

a stochastic integral with regard to the wk(s) processes and is unavailable in closed form. Hence, we

need to approximate these random variables.

Recalling the discussion below (3), let C = {s∗j , j = 1, 2, · · · , T} be a generic set of locations in the

domain that permits a sufficiently accurate approximation of the integral in the likelihood by

∫

D

∫

V
λk(s,v)dvds ≈ Fk(s

∗
1, s

∗
2, · · · , s∗T ),

where Fk(·) is some mark-specific function and the integral over V has already been computed analyti-

cally. For instance, if C is a uniformly drawn random set in the region D, Fk becomes the Monte Carlo

sum,

Fk(s
∗
1, s2

∗, · · · , s∗T ) =

∫

V

|D|
T

∑
j

λk(s
∗
j ,v)dv .

Note the integral with respect to v can be done analytically regardless of whether v is discrete or

continuous, as discussed previously. However, this results in a computational difficulty: the likelihood

will require us to work with an (n + T )-dimensional multivariate normal distribution, where T could

be very large. This will in turn require inverses and determinants of very large covariance matrices.

This so-called “big n problem” is receiving significant attention along several different paths. The
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first seeks approximations for the spatial process using kernel convolutions, moving averages or basis

functions (e.g., Wikle and Cressie, 1999; Higdon, 2002; Ver Hoef et al., 2004; Xia and Gelfand, 2006;

Paciorek and Schervish, 2006, Banerjee et al., 2008). Essentially, the process w(s) is replaced by

an approximation w̃(s) that represents the realizations in a lower-dimensional subspace. A second

approach seeks instead to approximate the likelihood either by working in the spectral domain of the

spatial process and avoiding the matrix computations (Stein, 1999; Fuentes, 2007; Paciorek, 2007) or by

forming a product of appropriate conditional distributions to approximate the likelihood (e.g. Vecchia,

1988; Jones and Zhang, 1997; Stein et al., 2004). Still another approach is to replace the process

(random field) model by a Markov random field (Cressie, 1993), or else approximate the random field

model by a Markov random field (Rue and Tjelmeland, 2002; Rue and Held, 2006).

Here we will employ the predictive process method advocated by Banerjee et al. (2008). With

multiple types of outcomes, if we assume that w(s) = (w1(s), . . . , wK(s))′ is a multivariate Gaussian

process MV GP (0, Γw(·, ·,θ)), then the original process is actually a multivariate log Gaussian Cox

process. Let S∗ = {s∗1, . . . , s∗m} be an arbitrary set of knots, then w∗ = [wk(s
∗
j)]k,j ∼ MV N(0, Γ∗(θ))

is an realization of w(s) over S∗, with Γ∗(θ) = [Γ(s∗i , s
∗
j ,θ)] being the mK × mK corresponding

covariance matrix. For an arbitrary site s0, spatial interpolation (“kriging”) defines a spatial process

w̃(s0) = E(w(s0)|w∗), called the predictive process that is derived from the parent process w(s). The

realizations of w̃(s) are in fact optimal predictions conditional upon a realization of w(s) over S∗ (see

Banerjee et al., 2008, and references therein).

Replacing the original process w(s) by w̃(s), we approximate (8) by

∏

k

{
F̃k(t1, t2, · · · , tJ)

) nk∏
i=1

r(ski) exp(β0k + z(ski)
′βk + v′kiαk + (vki ⊗ z(ski))

′γk + w̃k(ski)),

where F̃ is obtained by replacing w in F by w̃.

Combined with priors for regression parameters and spatial residual processes, we have a fully
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Figure 1: Monte Carlo points used for the integral approximation and predictive process knots.

specified Bayesian model. We obtain posterior samples under this model using a straightforward Markov

chain Monte Carlo (MCMC) algorithm.

To implement a predictive process approximation for our dataset, we randomly generate points s∗j

in each census tract, proportional to its area, resulting in J = 2129 points in total with between 1

and 41 points in each census tract. To apply the predictive process approximation, we assume that

w(s) = (w1(s), w2(s)) is a bivariate Gaussian process MV GP (0, Γw(·, ·,θ)) with Γw(·, ·,θ)) = %(·, φ)Λ,

a separable cross-covariance specification where Λ =




σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


 and %(·, φ) is the univariate

exponential correlation function. Hence ρ denotes dependence between the spatial residuals for k = 1, 2

in (5). Conditional on the coefficients, it measures the association between realizations of the two

intensity surfaces at any location. We choose a regular grid with 93 knots s∗j spread evenly across the

region. Figure 1 shows the J = 2129 points and m = 93 grid knots.
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