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1 Model structure

This section presents in detail the mechanistic model of E. coli ’s central carbon meta-
bolism and its regulation discussed in the main paper.

1.1 Strategy for the derivation of the model topology

The topology of the model is shown in Figure 1 of the main paper. This topology com-
prises two compartments. The first compartment represents the cells’ closed environment
(as in batch experiments). The environment contains a population of identical cells and
the two carbon sources glucose and acetate. The second compartment represents the
cells.

The topology of the cellular compartment is centered on the five known transcrip-
tion factor (TF)-metabolite interactions in E. coli ’s central metabolism (Cra-fructose-
1,6-bisphosphate, Crp-cyclic AMP, IclR-glyoxylate, IclR-pyruvate, and PdhR-pyruvate).
The topology was derived with the following strategy:

1. The topology is seeded with the five TF-metabolite-interactions and the two carbon
sources glucose and acetate.

2. The seeded metabolites are connected to each other through the inclusion of
metabolic pathways.

3. The enzymes catalyzing the metabolic reactions are added. In the case of isozymes,
only the dominant enzyme is chosen.

4. Regulations of enzyme activity through metabolites appearing in the model, and
through phosphorylations, are added.

5. The expression of the modeled enzymes is added, along with their known tran-
scriptional regulations by the four TFs. The concentrations of the TFs themselves
and of the phosphotransferase system (PTS) proteins are modeled as constant.
The intermediate mRNA is ignored.

6. The model is simplified by merging linear pathways to single reactions whenever
the eliminated metabolic intermediates do not appear as effectors elsewhere in the
model, and the merged enzymes are unregulated or co-regulated by the same TF.

7. The production of biomass from the precursor metabolites and the calculation of
the growth rate are added.
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1.2 Overview of the model structure

When translated into mathematical equations, the model comprises 47 state variables x,
193 parameters p, and 109 rate equations f(x,p). Given an initial condition x(t = 0),
the progression of the state variables over the independent variable, the time t, is given by
ẋ = S · f(x,p), with S the constant stoichiometric matrix of dimension 47 x 109. Hence,
S · f calculates the differential change of the state variables from the rates occurring in
the system. The model is thus fully described by (x, p, f , S).

The 47 state variables, arranged in the vector x, are shown in Table S3. This table
lists the full names of the molecular compounds represented by the 47 state variables
xabbrv, with abbrv the abbreviations for the represented compounds. Table S3 also lists
the measured or derived values during balanced growth on glucose and acetate, which
were used for parameter estimation (see Section 2 of this Supplementary Information)
and as initial conditions for the simulations reported in the main paper.

The 109 rates, arranged in the vector f , are shown in Table S4. This table lists
the full names of the molecular rates represented by the 109 rates fabbrv, with abbrv the
abbreviations for the represented rates. Table S4 also lists the measured or derived
values during balanced growth on glucose and acetate, which are used for parameter
estimation (see Section 2 of this Supplementary Information).

The 193 parameters, which appear in the rate equations f(x,p), are arranged in
the vector p and shown in Table S5. This table lists the mechanistic meaning of the
parameters and their estimated values (see Section 2).

The stoichiometric matrix S is mostly zero, except at few entries. Rather than pre-
senting this sparse 47 x 109 matrix directly, it is far more informative to present the
47 equations that arise when S · f is multiplied out (see next Section). If needed, the
stoichiometric matrix S can be deduced from these equations, or extracted from the
MATLAB source code.

1.3 Balance equations

The 47 differential equations, which describe the time progression of the 47 state variables
over time as a function of the system’s rates, balance the

• biomass of the cell population

• concentrations of extracellular carbon sources

• concentrations of metabolites

• concentrations and phosphorylation states of enzymes and PTS proteins

• binding states of transcription factors.

The balance equations are:
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Biomass

ẋOD = fENV,growth

Extracellular carbon sources

ẋACT = fENV,ACTex − fENV,ACTup

ẋGLC = −fENV,GLCup

Metabolites

ẋACoA = fE,Acs + fE,Pdh − fE,Acoa2act − fE,GltA − fE,AceB − fD,ACoA − fBM,ACoA

ẋAKG = fE,AceA + fE,Icd − fE,Akg2mal − fD,AKG − fBM,AKG

ẋcAMP = fE,Cya − fE,CAMPdegr − fD,cAMP

ẋFBP = fE,PfkA − 0.5 · fE,Emp − fE,Fdp − fD,FBP

ẋG6P = fE,Fdp − fE,PfkA + fPTS,r4 − fD,G6P − fBM,G6P

ẋGLX = fE,AceA − fE,AceB − fD,GLX

ẋICT = fE,GltA − fE,AceA − fE,Icd − fD,ICT

ẋMAL = fE,AceB + fE,Akg2mal − fE,MaeAB − fE,Mdh − fD,MAL

ẋOAA = fE,Ppc + fE,Mdh − fE,PckA − fE,GltA − fD,OAA − fBM,OAA

ẋPEP = fE,PckA + fE,PpsA + fE,Eno − fE,Ppc − fE,PykF − fPTS,r1 − fD,PEP . . .

− fBM,PEP

ẋPG3 = fE,Emp − fE,Eno − fD,PG3 − fBM,PG3

ẋPY R = fE,MaeAB + fE,PykF − fE,Pdh − fE,PpsA + fPTS,r1 − fD,PY R − fBM,PY R

Enzymes and PTS proteins

ẋAceA = fG,aceA − fD,AceA

ẋAceB = fG,aceB − fD,AceB

ẋAceK = fG,aceK − fD,AceK

ẋAcoa2act = fG,acoa2act − fD,Acoa2act

ẋAcs = fG,acs − fD,Acs

ẋAkg2mal = fG,akg2mal − fD,Akg2mal

ẋCAMPdegr = fG,campdegr − fD,CAMPdegr

ẋCya = fG,cya − fD,Cya

ẋEmp = fG,emp − fD,Emp

ẋEno = fG,eno − fD,Eno

ẋFdp = fG,fdp − fD,Fdp

ẋGltA = fG,gltA − fD,GltA
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ẋIcd = fG,icd − fD,Icd − fE,AceK−Ki + fE,AceK−Ph

ẋIcd−P = −fD,Icd−P + fE,AceK−Ki − fE,AceK−Ph

ẋMdh = fG,mdh − fD,Mdh

ẋMaeAB = fG,maeAB − fD,MaeAB

ẋPckA = fG,pckA − fD,PckA

ẋPdh = fG,pdh − fD,Pdh

ẋPfkA = fG,pfkA − fD,PfkA

ẋPpc = fG,ppc − fD,Ppc

ẋPpsA = fG,ppsA − fD,PpsA

ẋPykF = fG,pykF − fD,PykF

ẋEIIA = fG,eiia − fD,EIIA − fPTS,r1 + fPTS,r4
ẋEIIA−P = −fD,EIIA−P + fPTS,r1 − fPTS,r4
ẋEIICB = fG,eiicb − fD,EIICB

Transcription factors

ẋCra = fG,cra − fD,Cra − fTF,Cra

ẋCraFBP = −fD,CraFBP + fTF,Cra

ẋCrp = fG,crp − fD,Crp − fTF,Crp

ẋCrpcAMP = −fD,CrpcAMP + fTF,Crp

ẋIclR = fG,iclR − fD,IclR

ẋPdhR = fG,pdhR − fD,PdhR − fTF,PdhR

ẋPdhRPY R = −fD,PdhRPY R + fTF,PdhR

The 109 individual rates f(x,p) that appear in these differential equations are struc-
tured in the six units

1. Cell growth and carbon source dynamics

2. Metabolic reactions and protein phosphorylations

3. Transcription factor- metabolite bindings

4. Gene expression

5. Dilution and degradation of compounds

6. Biomass generation and growth rate calculation.

The following six sections describe in detail the modeling of these units and present
the mechanistic rate equations f(x,p) belonging to these units.
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1.4 Cell growth and carbon source dynamics

The closed environment is fully described by the extracellular concentrations of the two
carbon sources glucose (xGLC) and acetate (xACT ), both of the unit g l−1. The size of
the E. coli cell population within this environment is given by its biomass concentration
(xOD).

To model the interaction of the E. coli cells with their environment, the substrate
exchange rates between the two compartments need to be quantified. Rates in the
compartment containing the intracellular processes are normalized to cell dry weight
and are of the unit µmol (gDW s)−1 ; rates in the compartment containing the environ-
ment scale with the biomass concentration of the cell population and are of the unit
gSUBSTRATE (l · s)−1 . Therefore, to quantify the substrate exchange rates of the whole
cell population, the substrate exchange rates of dry weight-normalized cells, calculated
in Section 1.5, need to be scaled with the biomass concentration and converted to the
proper units. The parameters needed to quantify this conversion are the molar mass
of glucose pENV,MGLC

, the molar mass of acetate pENV,MACT
, and the remaining unit

conversions subsumed in pENV,UC .
The rate equations describing cell growth and the production and consumption of

environmental carbon sources are:

fENV,growth = µxOD

fENV,GLCup = pENV,MGLC
pENV,UC xOD fPTS,r4

fENV,ACTup = pENV,MACT
pENV,UC xOD fE,Acs

fENV,ACTex = pENV,MACT
pENV,UC xOD fE,Acoa2act

1.5 Metabolic reactions and protein phosphorylations

All metabolic reactions occurring in the model are catalyzed by enzymes. Also, the phos-
phorylation and dephosphorylation of the enzyme Icd is catalyzed by the two enzymatic
reactions of the enzyme AceK. Further, the uptake and phosphorylation of glucose is
achieved with the help of protein phosphorylations occurring in the phosphotransferase
system (PTS).

Many of the modeled enzymes are in vivo present as multimers and as such most likely
exhibit cooperative binding kinetics. We assigned Monod-Wyman-Changeux kinetics to
these enzymes. This type of rate law includes the (known) number of a multimer’s
subunits as a parameter to account for cooperative binding effects. Further, the basic
formulation of this rate law can be easily extended to incorporate the effect of multiple
activators and inhibitors on the catalyzed reaction rate, which is an important property
given the dense enzymatic regulation present in the model. If a multimeric enzyme is
not subject to enzymatic regulation, we used a Hill–type kinetics instead to reduce the
number of uncertain parameters. We used Michaelis-Menten type rate laws to model
the kinetics of monomeric enzymes.
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Table S1 lists the chosen types of kinetic equations describing these reactions. The
full equations follow this table. The metabolic reactions that produce biomass from the
seven modeled precursor metabolites are presented in Section 1.9.

Table S1: Overview of the chosen types of kinetic rate equations for the metabolic reac-
tions and protein phosphorylation processes. The following abbreviations are
used: MM – Michaelis-Menten kinetics, revMM – reversible Michaelis-Menten
kinetics, 2S-MM – Two-substrate Michaelis-Menten kinetics, MWC – Monod-
Wyman-Changeux kinetics, rev2S-1st – Reversible two-substrate first order
kinetics, (A) – Activator, (I) – Inhibitor.

Rate Type Substrate(s) Effectors

fE,AceA MWC ICT AKG (I), PEP (I), PG3 (I)
fE,AceB 2S-MM GLX, ACoA —
fE,AceK−Ki MWC Icd AKG (I), GLX (I), ICT (I),

OAA (I), PEP(I), PG3 (I),
PYR (I)

fE,AceK−Ph MWC Icd-P AKG (A), OAA (A),
PEP (A), PG3 (A),
PYR (A)

fE,Acoa2act MWC ACoA PYR (A)
fE,Acs MM ACT —
fE,Akg2mal MM AKG —
fE,CAMPdegr MM cAMP —
fE,Cya MM EIIA-P * — *
fE,Emp revMM FBP, PG3 —
fE,Eno revMM PG3, PEP —
fE,Fdp MWC FBP PEP (A)
fE,GltA 2S-MM ACoA, OAA AKG (I, competitive)
fE,Icd MWC ICT PEP (I)
fE,MaeAB MWC MAL ACoA (I), cAMP (I)
fE,Mdh Hill MAL —
fE,PckA MM OAA PEP (I, competitive)
fE,Pdh MWC PYR GLX (I), PYR (I)
fE,PfkA MWC G6P PEP (I)
fE,Ppc MWC PEP FBP (A)
fE,PpsA MWC PYR PEP (I)
fE,PykF MWC PEP FBP (A)
fPTS,r1 rev2S-1st PEP, EIIA; —

PYR, EIIA-P
fPTS,r4 MM EIIA-P, GLC —

continued on the next page . . .

7



. . . Table S1 continued.

Rate Type Substrate(s) Effectors

* The Cya reaction is activated by EIIA-P and produces cAMP from void. Because ’void’ cannot be
a substrate in a mechanistic equation, the Cya reaction is modeled with the activator EIIA-P as
substrate. This approach conforms with the one chosen by (Bettenbrock et al, 2006).

fE,AceA = xAceA pAceA,kcat

xICT
pAceA,KICT

(
1 +

xICT
pAceA,KICT

)pAceA,n−1

. . .[(
1 +

xICT
pAceA,KICT

)pAceA,n

+ pAceA,L

(
1 +

xPEP
pAceA,KPEP

. . .

+
xPG3

pAceA,KPG3

+
xAKG

pAceA,KAKG

)pAceA,n

]−1

fE,AceB = xAceB pAceB,kcat xGLX xACoA

(
pAceB,KGLXACoA

pAceB,KACoA
. . .

+ pAceB,KACoA
xGLX + pAceB,KGLX

xACoA + xGLX xACoA

)−1

fE,AceK−Ki = xAceK pAceK,kcat,ki

xIcd
pAceK,KIcd

(
1 +

xIcd
pAceK,KIcd

)pAceK,n−1

. . .[(
1 +

xIcd
pAceK,KIcd

)pAceK,n

+ pAceK,L

(
1 +

xICT
pAceK,KICT

. . .

+
xGLX

pAceK,KGLX

+
xOAA

pAceK,KOAA

+
xAKG

pAceK,KAKG

+
xPEP

pAceK,KPEP

. . .

+
xPG3

pAceK,KPG3

+
xPY R

pAceK,KPY R

)pAceK,n
]−1

fE,AceK−Ph = xAceK pAceK,kcat,ph

xIcd−P
pAceK,KIcd−P

(
1 +

xIcd−P
pAceK,KIcd−P

)pAceK,n−1

. . .[(
1 +

xIcd−P
pAceK,KIcd−P

)pAceK,n

+ pAceK,L

(
1 +

xOAA
pAceK,KOAA

. . .

+
xAKG

pAceK,KAKG

+
xPEP

pAceK,KPEP

+
xPG3

pAceK,KPG3

+
xPY R

pAceK,KPY R

)− pAceK,n
]−1

fE,Acoa2act = xAcoa2act pAcoa2act,kcat

xACoA
pAcoa2act,KACoA

(
1 +

xACoA
pAcoa2act,KACoA

)pAcoa2act,n−1

. . .[(
1 +

xACoA
pAcoa2act,KACoA

)pAcoa2act,n

. . .
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+ pAcoa2act,L

(
1 +

xPY R
pAcoa2act,KPY R

)− pAcoa2act,n

]−1

fE,Acs =
xAcs pAcs,kcat xACT
xACT + pAcs,KACT

fE,Akg2mal =
xAkg2mal pAkg2mal,kcat xAKG
xAKG + pAkg2mal,KAKG

fE,CAMPdegr =
pCAMPdegr,kcat xCAMPdegr xcAMP

xcAMP + pCAMPdegr,KcAMP

fE,Cya =
pCya,kcat xCya xEIIA−P
xEIIA−P + pCya,KEIIA−P

fE,Emp =
xEmp

(
pEmp,kcat,f

xFBP

pEmp,KFBP

− pEmp,kcat,r

xPG3

pEmp,KPG3

)
1 + xFBP

pEmp,KFBP

+ xPG3

pEmp,KPG3

fE,Eno =
xEno

(
pEno,kcat,f

xPG3

pEno,KPG3

− pEno,kcat,r

xPEP

pEno,KPEP

)
1 + xPG3

pEno,KPG3

+ xPEP

pEno,KPEP

fE,Fdp =
xFdp pFdp,kcat

xFBP

pFdp,KFBP

(
1 + xFBP

pFdp,KFBP

)pFdp,n−1

(
1 + xFBP

pFdp,KFBP

)pFdp,n

+ pFdp,L

(
1 + xPEP

pFdp,KPEP

)− pFdp,n

fE,GltA = xGltA pGltA,kcat xOAA xACoA

[(
1 +

xAKG
pGltA,KAKG

)
pGltA,KOAAACoA

. . .

pGltA,KACoA
+ pGltA,KACoA

xOAA +
(

1 +
xAKG

pGltA,KAKG

)
. . .

pGltA,KOAA
xACoA + xOAA xACoA

]−1

fE,Icd =
xIcd pIcd,kcat

xICT

pIcd,KICT

(
1 + xICT

pIcd,KICT

)pIcd,n−1

(
1 + xICT

pIcd,KICT

)pIcd,n

+ pIcd,L

(
1 + xPEP

pIcd,KPEP

)pIcd,n

fE,MaeAB = xMaeAB pMaeAB,kcat

xMAL

pMaeAB,KMAL

(
1 +

xMAL

pMaeAB,KMAL

)pMaeAB,n−1

. . .[(
1 +

xMAL

pMaeAB,KMAL

)pMaeAB,n

+ pMaeAB,L . . .(
1 +

xACoA
pMaeAB,KACoA

+
xcAMP

pMaeAB,KcAMP

)pMaeAB,n
]−1

fE,Mdh =
xMdh pMdh,kcat xMAL

pMdh,n

xMAL
pMdh,n + pMdh,KMAL

pMdh,n

fE,PckA =
xPckA pPckA,kcat xOAA

xOAA + pPckA,KOAA

(
1 + xPEP

pPckA,KPEP

)
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fE,Pdh =
xPdh pPdh,kcat

xPY R

pPdh,KPY R

(
1 + xPY R

pPdh,KPY R

)pPdh,n−1

(
1 + xPY R

pPdh,KPY R

)pPdh,n

+ pPdh,L

(
1 + xGLX

pPdh,KGLX

+ xPY R

pPdh,KI,PY R

)pPdh,n

fE,PfkA =
xPfkA pPfkA,kcat

xG6P

pPfkA,KG6P

(
1 + xG6P

pPfkA,KG6P

)pPfkA,n−1

(
1 + xG6P

pPfkA,KG6P

)pPfkA,n

+ pPfkA,L

(
1 + xPEP

pPfkA,KPEP

)pPfkA,n

fE,Ppc =
xPpc pPpc,kcat

xPEP

pPpc,KPEP

(
1 + xPEP

pPpc,KPEP

)pPpc,n−1

(
1 + xPEP

pPpc,KPEP

)pPpc,n

+ pPpc,L

(
1 + xFBP

pPpc,KFBP

)−pPpc,n

fE,PpsA =
xPpsA pPpsA,kcat

xPY R

pPpsA,KPY R

(
1 + xPY R

pPpsA,KPY R

)pPpsA,n−1

(
1 + xPY R

pPpsA,KPY R

)pPpsA,n

+ pPpsA,L

(
1 + xPEP

pPpsA,KPEP

)pPpsA,n

fE,PykF =
xPykF pPykF,kcat

xPEP

pPykF,KPEP

(
1 + xPEP

pPykF,KPEP

)pPykF,n−1

(
1 + xPEP

pPykF,KPEP

)pPykF,n

+ pPykF,L

(
1 + xFBP

pPykF,KFBP

)−pPykF,n

fPTS,r1 = pPTS,k1 xPEP xEIIA − pPTS,km1 xPY R xEIIA−P

fPTS,r4 =
pPTS,k4 xEIICB xEIIAP

xGLC
(pPTS,KEIIA

+ xEIIA−P ) (pPTS,KGLC
+ xGLC)

1.6 Transcription factor–metabolite interactions

The interactions of the transcription factors Cra, Crp and PdhR with the respective
metabolites FBP, cAMP, and PYR are modeled with single rate equations each, which
combine the association and dissociation rates into one rate. A positive net rate results
when the association rate is higher than the dissociation rate, a negative net rate when
the reverse is the case. The net rate can be determined by first calculating the association
and dissociation rates separately and then joining them to the net rate. This is essentially
what the following equation do; however, the calculation of the net rate in these equations
is rearranged such that the net rate is determined through scaling (and unit conversion
of) the deviation of the actual binding state from the steady state level. The resulting
rate equations are:

fTF,Cra = pCra,scale

[
(xCra + xCraFBP )xFBP

pCra,n

xFBP pCra,n + pCra,KFBP
pCra,n

− xCraFBP

]

fTF,Crp = pCrp,scale

[
(xCrp + xCrpcAMP )xcAMP

pCrp,n

xcAMP
pCrp,n + pCrp,KcAMP

pCrp,n
− xCrpcAMP

]
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fTF,PdhR = pPdhR,scale

[
(xPdhR + xPdhRPY R)xPY R

pPdhR,n

xPY R pPdhR,n + pPdhR,KPY R
pPdhR,n

− xPdhRPY R

]
.

The binding of Cra to FBP is assumed to be cooperative with degree n = 2, because
Cra is structurally similar to LacI (both proteins belong to the GalR/LacI family of
transcriptional regulators), which binds to lactose with n ≈ 2 (Yagil & Yagil, 1971).
The bindings of the other two interactions are assumed to be non-cooperative (n = 1),
reducing their Hill-type kinetics to Michaelis-Menten-type.

The binding of the transcription factor IclR to the metabolites GLX and PYR is mod-
eled jointly with the binding of IclR to the promoter region of the aceBAK operon, and
is presented in Section 1.7.1. This modeling avoids the introduction of three additional
states (IclR bound to either GLX or PYR or both) and the rates between these, and is
straightforward because IclR represses only that one operon.

1.7 Gene expression

This section first describes the modeling of regulated gene expression, and then of un-
regulated gene expression. It continues with explaining how the growth rate dependency
of gene expression was modeled, and, finally, lists the resulting rate equations.

1.7.1 Expression of regulated genes

The production rates of most modeled proteins are regulated by at least one of the
four modeled transcription factors (known transcriptional regulations exerted by other
transcription factors have been ignored, because these are outside the chosen system
boundary, see Section 1.1 of this Supporting Information).

With two exceptions, the expression of a gene is regulated by only one transcription
factor. In this case, the impact of transcriptional regulation on the protein production
rate is modeled as a weighed sum of two production rates. These two production rates
are quantified by the parameters p<gene>,v<TF>,unbound

and p<gene>,v<TF>,bound
, respectively.

The parameter p<gene>,v<TF>,unbound
quantifies the production rate when the promoter is

not occupied by the regulating transcription factor; the parameter p<gene>,v<TF>,bound

quantifies the production rate when the promoter is occupied by the regulating tran-
scription factor (’bound’). These two production rates are weighed by the occupancy
of the promoter with the regulating transcription factor. To calculate the occupancy
and thus the weighting factor, either a Michaelis-Menten or a Hill kinetics was used,
with the regulating transcription factor’s active form, i.e. Cra, Crp-cAMP, or PdhR
(as opposed to their inactive forms Cra-FBP, Crp, and PdhR-PYR), as substrate. A
Michaelis-Menten kinetics was preferred unless it was unable to reproduce the steady
state rates on glucose and acetate; in these cases, we chose a Hill kinetics instead.

One of the two promoters regulated by more than one TF is that of the super-enzyme
’Emp’. The production of this enzyme, which represents the section of the Emden-
Meyerhoff pathway between FBP and PG3, is transcriptionally activated by Crp and
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repressed by Cra. The contributions of these two transcriptions factors to the overall
expression rate are modeled as additive (as opposed to multiplicative).

The second promoter regulated by more than one TF is that of the aceBAK operon,
which controls the production of the three enzymes AceA, AceB and AceK. The ratio of
these three enzymes’ production rates fG,aceA : fG,aceB : fG,aceK is approximately equal to
1 : 0.3 : 0.03 (Chung et al, 1993). In the model, this ratio is ensured by first calculating
the gene expression rate of aceA, and then scaling that rate with 0.3 and 0.03 to obtain
the expression rates of the aceB and aceK genes, respectively. The expression of the
aceA gene is jointly regulated by the three transcription factors Cra, Crp and IclR. The
impact of these three individual regulations on the overall expression of the aceA gene
is modeled as additive (as opposed to multiplicative).

The third of the three additive contributions to the overall expression rate of the aceA
gene is its repression by the transcription factor IclR. The two ligands recognized by
IclR act as corepressor (PYR) or activator (GLX) on the transcription of the aceBAK
operon (Lorca et al, 2007), in the manner depicted in Figure S1. Thus, if one monitors
the binding of DNA to the tetramer (T) in the absence and presence of pyruvate (P),
which is opposed by glyoxylate (G), which binds to the dimer (D), the observed response
Y is

Y =
X
[

[DNA]
KDNA

(
1 + [P ]

KP

)]
(1 + 1

L

[
[G]
KG

(
1 + [G]

KG

)]
+ [DNA]

KDNA
+ [P ]

KP
+ [DNA][P ]

KDNAK
′
P

,

with X the maximum response and the equilibria defined in the caption of Figure S1.
Unlike the interaction of the other transcription factors with their respective ligands

(see Section 1.6), the mechanistic description of IclR activity is directly incorporated
into the expression rate equation of the aceA gene.

1.7.2 Expression of unregulated genes

Constitutively expressed enzymes, PTS proteins and transcription factors are, with two
exceptions, modeled with a constant concentration. The production (see the Equations
below), dilution and degradation rates (see Section 1.8) of these proteins are set to zero;
therefore, the constant protein concentrations are determined by the initial conditions.

The two exceptions are the enzymes Ppc and MaeAB (which lumps the two isoen-
zymes MaeA and MaeB). Neither of the genes ppc, maeA nor maeB is known to be
regulated (Keseler et al, 2009), yet, the respective mRNA concentrations were found
to be markedly distinct for growth on glucose and acetate (Oh et al, 2002). As it has
been observed that protein and mRNA abundances in E. coli cells are significantly cor-
related (Ishihama et al, 2008), the respective protein concentrations are very likely also
markedly distinct. Accordingly, the measured steady state fluxes on glucose and acetate
could not be simultaneously reproduced with constant Ppc and MaeAB concentrations.

Therefore, we set up the model equations in such a way that the differences in the Ppc
and MaeAB concentrations on glucose and acetate are proportional to the measured dif-
ferences in the respective mRNA concentrations. To realize such concentration changes
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Figure S1: Graphical representation of the interactions described by (Lorca et al, 2007),
from which the kinetic equation describing these interactions is derived. IcIR,
as dimer (D) or tetramer (T), is being titrated by DNA, glyoxylate (G),
and/or pyruvate (P). The equilibria needed for the derivation are KDNA =
[T ][DNA]
[T−DNA]

, KP = [T ][P ]
[T−P ]

, K ′P = [T−DNA][P ]
[T−P−DNA]

, KG = [G][D]
[G−D]

and L = [T ]
[D]2

. As only
three out of the four equilibria around a cycle are needed to define it, the
remaining equilibrium K ′DNA = [T−P ][DNA]

[T−P−DNA]
is not needed for the derivation

of the kinetic equation.

as a response to changes in the availability of glucose and acetate, we chose the following
implementation. First, for each of the two enzymes Ppc and MaeAB, the model calcu-
lates the sum of dilution and degradation rates that would occur if the Ppc and MaeAB
concentrations were in steady state (for the calculation of the carbon source-dependent
steady state concentrations SSPpc and SSMaeAB of Ppc and MaeAB, respectively, see
Section 1.9 of this Supporting Information). Then, the actual production rates of Ppc
and MaeAB are set to equal their steady state degradation+dilution rates. The effect
of this modeling is that the actual, possibly out-of-steady state protein concentrations
xMaeAB and xPpc approach their calculated, carbon source-dependent steady state con-
centrations. With this workaround, the model is capable to reproduce the measured
steady state fluxes for growth on glucose and acetate.

1.7.3 Growth rate–dependency of gene expression

Gene expression is growth rate–dependent due to growth-rate dependent concentrations
of DNA polymerases and ribosomes (Bremer et al, 2008). The growth-rate dependent
efficiency of the gene expression machinery is modeled as a linear function of the growth
rate (pBM,kexpr · µ), and the expression rates of all regulated genes are multiplied by this
function.

We found that when this growth rate-dependency is neglected, the measured steady
state concentrations of the proteins cannot be reproduced on both glucose and acetate
simultaneously. The reason for such failed reproduction is that to reproduce the mea-
sured steady states where the protein production and dilution+degradation rates are
equal, the production rates must be capable to balance the dilution rates for both high
and low growth rates. However, the model covers a wide range of growth rates (the
growth rate on glucose is approximately three times higher than the growth rate on
acetate); therefore, the inherently growth-rate dependent dilution rates can vary over
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a wide range. To make the production rates capable to balance the dilution rates for
both high and low growth rates, the growth-rate dependency of gene expression must
be considered as well.
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1.7.4 Rate equations for gene expression

Table S2 lists the chosen types of rate equations to describe the process of gene expres-
sion. The full equations follow this table.

Table S2: Overview of the chosen types of rate equations to describe the process of gene
expression. The following abbreviations are used: MM – Michaelis-Menten
kinetics plus basal expression term, Hill – Hill kinetics plus basal expression
term, (A) – transcriptional activator, (R) – transcriptional repressor.

Rate Type Regulators

fG,aceA special, see text Cra (A), Crp-cAMP (R), IclR (R)
fG,aceB = 0.3 ·fG,aceA —
fG,aceK = 0.03 ·fG,aceA —
fG,acoa2act = 0 —
fG,acs Hill Crp-cAMP (A)
fG,akg2mal Hill Crp-cAMP (A)
fG,campdegr = 0 —
fG,cra = 0 —
fG,crp = 0 —
fG,cya = 0 —
fG,emp MM Cra (R), Crp-cAMP (A)
fG,eno MM Cra (R)
fG,fdp MM Cra (A)
fG,gltA Hill Crp-cAMP (A)
fG,icd MM Cra (A)
fG,iclr = 0 —
fG,maeAB special, see text —
fG,mdh MM Crp-cAMP (A)
fG,pckA MM Cra (A)
fG,pdh MM PdhR (R)
fG,pdhr = 0 —
fG,pfkA MM Cra (R)
fG,ppc special, see text —
fG,ppsA MM Cra (A)
fG,pykF MM Cra (R)
fG,EIIA = 0 —
fG,EIICB = 0 —
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fG,aceA = µ pBM,kexpr

{(
1− xCra

xCra + paceBAK,KCra

)
paceBAK,vCra,unbound

. . .

+
xCra

xCra + paceBAK,KCra

paceBAK,vCra,bound
. . .

+

(
1− xCrpcAMP

xCrpcAMP + paceBAK,KCrp

)
paceBAK,vCrp,unbound

. . .

+
xCrpcAMP

xCrpcAMP + paceBAK,KCrp

paceBAK,vCrp,bound
. . .

+

[
1− paceBAK,DNA

paceBAK,KDNA

(
1 +

xPY R
paceBAK,KPY Rprime

)
. . .(

1 +
1

L

(
xGLX

paceBAK,KGLX

)(
1 +

xGLX
paceBAK,KGLX

)
. . .

+
paceBAK,DNA
paceBAK,KDNA

+
xPY R

paceBAK,KPY R

+
paceBAK,DNA
paceBAK,KDNA

. . .

· xPY R
paceBAK,KPY Rprime

)−1 ]
paceBAK,kcat,IclR

xIclR

}
fG,aceB = paceBAK,aceBfactor fG,aceA

fG,aceK = paceBAK,aceKfactor fG,aceA

fG,acoa2act = 0

fG,acs = µ pBM,kexpr

[(
1− xCrpcAMP

pacs,n

xCrpcAMP
pacs,n + pacs,KCrp

pacs,n

)
pacs,vCrp,unbound

. . .

+
xCrpcAMP

pacs,n

xCrpcAMP
pacs,n + pacs,KCrp

pacs,n
pacs,vCrp,bound

]

fG,akg2mal = µ pBM,kexpr

[(
1− xCrpcAMP

pakg2mal,n

xCrpcAMP
pakg2mal,n + pakg2mal,KCrp

pakg2mal,n

)
. . .

pakg2mal,vCrp,unbound
+

xCrpcAMP
pakg2mal,n

xCrpcAMP
pakg2mal,n + pakg2mal,KCrp

pakg2mal,n
. . .

pakg2mal,vCrp,bound

]
fG,campdegr = 0

fG,cra = 0

fG,crp = 0

fG,cya = 0
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fG,emp = µ pBM,kexpr

[(
1− xCra

xCra + pemp,KCra

)
pemp,vCra,unbound

. . .

+
xCra

xCra + pemp,KCra

pemp,vCra,bound
. . .

+

(
1− xCrpcAMP

xCrpcAMP + pemp,KCrp

)
pemp,vCrp,unbound

. . .

+
xCrpcAMP

xCrpcAMP + pemp,KCrp

pemp,vCrp,bound

]

fG,eno = µ pBM,kexpr

[(
1− xCra

xCra + peno,KCra

)
peno,vCra,unbound

. . .

+
xCra

xCra + peno,KCra

peno,vCra,bound

]

fG,fdp = µ pBM,kexpr

[(
1− xCra

xCra + pfdp,KCra

)
pfdp,vCra,unbound

. . .

+
xCra

xCra + pfdp,KCra

pfdp,vCra,bound

]

fG,gltA = µ pBM,kexpr

[(
1− xCrpcAMP

pgltA,n

xCrpcAMP
pgltA,n + pgltA,KCrp

pgltA,n

)
pgltA,vCrp,unbound

. . .

+
xCrpcAMP

pgltA,n

xCrpcAMP
pgltA,n + pgltA,KCrp

pgltA,n
pgltA,vCrp,bound

]

fG,icd = µ pBM,kexpr

[(
1− xCra

xCra + picd,KCra

)
picd,vCra,unbound

. . .

+
xCra

xCra + picd,KCra

picd,vCra,bound

]
fG,iclr = 0

fG,maeAB = (µ+ pD,kdegr
)SSxMaeAB

fG,mdh = µ pBM,kexpr

[(
1− xCrpcAMP

xCrpcAMP + pmdh,KCrp

)
pmdh,vCrp,unbound

. . .

+
xCrpcAMP

xCrpcAMP + pmdh,KCrp

pmdh,vCrp,bound

]

fG,pckA = µ pBM,kexpr

[(
1− xCra

xCra + ppckA,KCra

)
ppckA,vCra,unbound

. . .
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+
xCra

xCra + ppckA,KCra

ppckA,vCra,bound

]

fG,pdh = µ pBM,kexpr

[(
1− xPdhR

xPdhR + ppdh,KPdhR

)
ppdh,vPdhR,unbound

. . .

+
xPdhR

xPdhR + ppdh,KPdhR

ppdh,vPdhR,bound

]
fG,pdhr = 0

fG,pfkA = µ pBM,kexpr

[(
1− xCra

xCra + ppfkA,KCra

)
ppfkA,vCra,unbound

. . .

+
xCra

xCra + ppfkA,KCra

ppfkA,vCra,bound

]
fG,ppc = (µ+ pD,kdegr

)SSxPpc

fG,ppsA = µ pBM,kexpr

[(
1− xCra

xCra + pppsA,KCra

)
pppsA,vCra,unbound

. . .

+
xCra

xCra + pppsA,KCra

pppsA,vCra,bound

]

fG,pykF = µ pBM,kexpr

[(
1− xCra

xCra + ppykF,KCra

)
ppykF,vCra,unbound

. . .

+
xCra

xCra + ppykF,KCra

ppykF,vCra,bound

]
fG,EIIA = 0

fG,EIICB = 0

1.8 Dilution and degradation of compounds

All metabolites dilute with the growth rate due to the expanding volume of the cell.
Similarly, proteins dilute in the same manner, and additionally degrade with a here
assumed ’universal’ protein degradation rate kdegr. The concentrations of some proteins
such as the transcription factors, however, are assumed as constant; these proteins are
in the model neither produced (see Section 1.7.2), nor diluted or degraded.
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Metabolite dilution

fD,ACoA = µxACoA

fD,cAMP = µxcAMP

fD,FBP = µxFBP

fD,G6P = µxG6P

fD,GLX = µxGLX

fD,ICT = µxICT

fD,MAL = µxMAL

fD,OAA = µxOAA

fD,PEP = µxPEP

fD,PG3 = µxPG3

fD,PY R = µxPY R

fD,AKG = µxAKG

Protein degradation and dilution

fD,AceA = (µ+ pD,kdegr
)xAceA

fD,AceB = (µ+ pD,kdegr
)xAceB

fD,AceK = (µ+ pD,kdegr
)xAceK

fD,Acoa2act = 0

fD,Acs = (µ+ pD,kdegr
)xAcs

fD,CAMPdegr = 0

fD,Cra = 0

fD,CraFBP = 0

fD,Crp = 0

fD,CrpcAMP = 0

fD,Cya = 0

fD,Emp = (µ+ pD,kdegr
)xEmp

fD,Eno = (µ+ pD,kdegr
)xEno

fD,Fdp = (µ+ pD,kdegr
)xFdp

fD,GltA = (µ+ pD,kdegr
)xGltA

fD,Icd = (µ+ pD,kdegr
)xIcd

fD,Icd−P = (µ+ pD,kdegr
)xIcd−P

fD,IclR = 0

fD,MaeAB = (µ+ pD,kdegr
)xMaeAB

fD,Mdh = (µ+ pD,kdegr
)xMdh
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fD,PckA = (µ+ pD,kdegr
)xPckA

fD,Pdh = (µ+ pD,kdegr
)xPdh

fD,PdhR = 0

fD,PdhRPY R = 0

fD,PfkA = (µ+ pD,kdegr
)xPfkA

fD,Ppc = (µ+ pD,kdegr
)xPpc

fD,PpsA = (µ+ pD,kdegr
)xPpsA

fD,PykF = (µ+ pD,kdegr
)xPykF

fD,Akg2mal = (µ+ pD,kdegr
)xAkg2mal

fD,EIIA = 0

fD,EIIAP
= 0

fD,EIICB = 0

1.9 Biomass production rates and growth rate calculation

Calculation of growth rates from simulated intracellular concentrations and reaction
rates (such as of the biomass–producing metabolic reactions) is still an unresolved prob-
lem in the field of kinetic models. A previous study was unable to find a function that
reproduces the measured growth rates from the simulated compound concentrations and
reaction rates (Bettenbrock et al, 2006). Instead, the authors of this work used the mea-
sured time course of the growth rate as input to the model. The same group has later
established a correlation between the growth rate on glycolytic substrates and the phos-
phorylation of a PTS protein (Bettenbrock et al, 2007), which the here presented model
unfortunately cannot exploit since this correlation only holds for glycolytic growth but
not for growth on the gluconeogenic substrate acetate.

In this study, we chose a different approach to calculate the growth rate. Instead of
calculating the growth rate as a function of the intracellular states and rates, we exploited
the fact that the growth rate is determined by the quality of the growth medium (Tao
et al, 1999) and calculated the growth rate as a function of the available carbon sources.
This function uses two weights that depend on the available carbon sources to interpolate
between the steady state growth rates on either glucose or acetate as the sole carbon
sources.

The two weights used to calculate the carbon source-dependent growth rate are defined
as

αGLC =
xGLC

xGLC + pPTS,KGLC

αACT =
xACT

xACT + pAcs,KACT

(1− αGLC) ,

with pPTS,KGLC
the Monod constant for glucose and pAcs,KACT

the Monod constant for
acetate. With this definition, αGLC vanishes when glucose is absent and approaches 1 for
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increasing glucose concentrations, αACT vanishes when acetate is absent and approaches
1 for increasing acetate concentrations only when glucose is absent, and 0 ≤ αGLC +
αACT < 1. These two weigths are then used to calculate the growth rate from the
available carbon sources through

µ = αGLC pBM,µGLC
+ αACT pBM,µACT

, (S1)

which interpolates between the known growth rates on glucose (pBM,µGLC
) and acetate

(pBM,µACT
).

The two weights αGLC and αACT are further used to calculate the carbon source-
dependent steady state concentrations SSxPpc

and SSxMaeAB
of the enzymes Ppc and

MaeAB (see Section 1.7.2) through

SSxMaeAB
= αGLC · 1.00 · 10−3 gProt

gDW
+ αACT · 3.40 · 10−3 gProt

gDW

SSxPpc
= αGLC · 1.00 · 10−3 gProt

gDW
+ αACT · 2.80 · 10−4 gProt

gDW
,

which interpolate between the steady state data on glucose and acetate.
The reactions for the production of biomass from the seven precursor metabolites

ACoA, AKG, G6P, OAA, PEP, PG3 and PYR are modeled with first order kinetics,

fBM,ACoA = kBM,ACoA xACoA

fBM,AKG = kBM,AKG xAKG

fBM,G6P = kBM,G6P xG6P

fBM,OAA = kBM,OAA xOAA

fBM,PEP = kBM,PEP xPEP

fBM,PG3 = kBM,PG3 xPG3

fBM,PY R = kBM,PY R xPY R ,

with kBM,M the seven first order reaction rate constants. These rate constants were
determined as follows. At steady state, the seven biomass production rates fBM,M,SS

and the seven metabolite concentrations xM,SS are known for growth on either glucose
or acetate (see Section 2). Thus, the carbon source-dependent first order rate constants
are given by kBM,M = fBM,M,SS/xM,SS. As these rate constants differ for growth on
glucose or acetate, their actual values depend on the available carbon sources and are
determined through

kBM,ACoA = αGLC pBM,GLCACoA
+ αACT pBM,ACTACoA

kBM,AKG = αGLC pBM,GLCAKG
+ αACT pBM,ACTAKG

kBM,G6P = αGLC pBM,GLCG6P
+ αACT pBM,ACTG6P

kBM,OAA = αGLC pBM,GLCOAA
+ αACT pBM,ACTOAA

kBM,PEP = αGLC pBM,GLCPEP
+ αACT pBM,ACTPEP

kBM,PG3 = αGLC pBM,GLCPG3
+ αACT pBM,ACTPG3

kBM,PY R = αGLC pBM,GLCPY R
+ αACT pBM,ACTPY R

,
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which interpolate between the carbon source-dependent first order rate constants on
glucose pBM,GLCM

and acetate pBM,ACTM
.
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2 Parameter estimation

This section first outlines the followed parameter estimation strategy. Then, it describes
the derivation of complete state and rate data sets, which need to be determined in
order to apply the chosen parameter estimation strategy. Finally, it lists the values of
the estimated parameters.

2.1 Application of the divide–and–conquer approach

We applied the divide–and–conquer approach (Kotte & Heinemann, 2009) to deter-
mine the parameters of the presented model from experimental data. This approach
decomposes the global estimation problem into multiple independent subproblems of
much smaller dimension. This property effectively removes the burden of providing a
global optimizer with sufficiently good initial guesses of the parameter values, which is
a significant relief given the size of this estimation problem.

In the first step of the divide–and–conquer approach, complete steady state -omics
data sets of all the model’s states and rates must be obtained. However, the available
-omics measurement data sets are still incomplete. Therefore, we needed to incorporate
additional biological knowledge in order to ’extrapolate’ these incomplete measurement
data sets to complete data sets of observables. Based on published measurement data, we
derived two complete data sets for balanced growth on glucose and acetate, respectively.
For details on this derivation, refer to Sections 2.2 and 2.3. The two complete data
sets comprise 153 data points each, or 306 in total — 2 x 44 data points of states (see
Table S3), and 2 x 109 data points of rates (see Table S4).

The second step in the application of the divide–and–conquer approach is the de-
composition of the global estimation problem into multiple independent subproblems
of smaller dimension. The degree of this decomposition, and thus the advantage of us-
ing the approach, can be increased by ensuring that each estimated parameter appears
in exactly one rate equation. In the model, all parameters appear in exactly one rate
equation, with the exception of two: The universal protein degradation rate pD,kdegr

ap-
pears in all dynamic protein degradation rate equations, and the scaling factor of the
growth-rate dependent efficiency of the gene expression machinery pBM,kexpr appears in
all dynamic gene expression rate equations. If these two parameters are excluded from
the estimation problem, then the estimation problems of all rates become independent
of each other. In order to trigger such a decomposition, we excluded these two param-
eter from the estimation problem. Instead, we used a literature value for the universal
protein degradation rate pD,kdegr

and arbitrarily set the scaling factor of the growth-
rate dependent efficiency of the gene expression machinery pD,kdegr

to 1. This arbitrary
value is justified because in the model, pD,kdegr

is always multiplied with parameters
that describe the maximal gene expression rates, such that the later estimation of these
maximal gene expression rates can correct for the arbitrary value of pD,kdegr

. With the
exclusion of these two parameters from the estimation problem, the estimation problems
of the individual rate equations are decoupled from each other and can thus be solved
independently.
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The third and final fourth steps of the divide–and–conquer approach concern the
derivation of the complete, analytical solution spaces of the exactly determined or un-
derdetermined parameter estimation subproblems, and the systematic analysis of these
spaces to obtain a sound system understanding in the face of non-identifiable parameter
values (Kotte & Heinemann, 2009). When an estimation subproblem was underdeter-
mined, we screened the literature and two previous models (Bettenbrock et al, 2006;
Chassagnole et al, 2002) for values of parameters that appear in the underdetermined
subproblem. The solutions to the small dimensional estimation subproblems were then
joined to the solution of the original parent estimation problem. The resulting parameter
values are listed in Table S5.

2.2 Derivation of complete data sets of state variables

Table S3 contains the steady state values of the state variables x on glucose and ac-
etate. These values are either experimental data, or, where experimental data was not
available, estimated from experimental data through the inclusion of additional bio-
logical knowledge. Specifically, to obtain two complete metabolomes, we used NET
analysis (Kümmel et al, 2006) to integrate and consolidate quantitative metabolite mea-
surements from multiple sources (Lowry et al, 1971; Chassagnole et al, 2002; Epstein et
al, 1975; el-Mansi et al, 1986; Crasnier-Mednansky, 1997; Peng et al, 2004; Rahman et
al, 2006), measured during growth on either glucose or acetate, into two thermodynam-
ically consistent data sets. To complete these data sets, we again used NET analysis to
infer unknown metabolite concentrations from measured concentrations.

To obtain a complete proteome for balanced growth on glucose, we used measured
concentrations where available (Ishihama et al, 2008; Anderson et al, 1971) and set all
unmeasured protein concentrations to the arbitrary value 1.0 · 10−3gProt/gDW . These
arbitrary protein concentrations on glucose are justified because in the model, a protein
concentration always appears paired with a multiplicative parameter kcat such that the
later estimation of this parameter value can correct for an arbitrarily chosen absolute
concentration of the protein. Unfortunately, we could not find any published proteome
data for growth on acetate. However, it has been observed that protein and mRNA
abundances in E. coli cells are significantly correlated (Ishihama et al, 2008). Therefore,
we used the data of a microarray study that determined the ratios of mRNA concen-
trations between growth on glucose and acetate (Oh & Liao, 2000; Oh et al, 2002) to
estimate the protein concentrations on acetate from those on glucose.

In five cases (EIIA, Icd, Cra, Crp, and PdhR), the concentration of a physical com-
pound is distributed over two state variables. In these cases, the total concentration of
the physical compound is the sum of these two state variables. Two of these cases arise
because the PTS protein EIIA and the enzyme Icd both exist in a phosphorylated and
an unphosphorylated form. As the degree of phosphorylation ρ with 0 ≤ ρ ≤ 1 of these
compounds is known for balanced growth on glucose and acetate (Bettenbrock et al,
2006; Walsh & Koshland, 1984), the steady state concentrations of the phosphorylated
and unphosphorylated forms, xp and xu respectively, can be calculated from the total
protein concentrations xtot through xp = ρ xtot and xu = (1 − ρ)xtot. The remaining
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three cases arise because the TFs Cra, Crp, and PdhR appear either bound or unbound
to their respective metabolite effectors FBP, cAMP, and PYR. Because the concentra-
tions of the metabolite-bound and free forms on glucose and acetate are unknown, we
needed a rationale to set these concentrations. As the activity of these TFs is believed to
be markedly distinct during glycolytic and gluconeogenic growth, and the TF activities
are modulated by their small molecule effectors, we chose the parameters quantifying
the TF-metabolite bindings such that the difference between the TFs’ metabolite-bound
concentrations on glucose and acetate is maximized.

Table S3: Comprehensive list of the dynamic state variables x, the full names of the
represented compounds, and the steady state values on glucose and acetate,
which are based on experimental data. The units of the states are g l−1 for car-
bon sources, µmol

gDW
for metabolites, gProt

gDW
for proteins, and [OD] for the biomass

concentration.

Name of Description Data on Data on
state glucose acetate

xOD Biomass concentration - -
xACT Extracellular acetate - -
xGLC Extracellular glucose - -
xACoA Acetyl-CoA 0.35 1.9
xAKG α-Ketoglutarate 0.2 1.1
xcAMP Cyclic AMP 0.2 4
xFBP Fructose-1,6-bisphosphate 6.6 0.28
xG6P Glucose-6-phosphate 1.85 1.17
xGLX Glyoxylate 1.00E-08 1.35
xICT Isocitrate 1.35E-03 1.54
xMAL Malate 3.6 6.65
xOAA Oxaloacetate 0.05 0.07
xPEP Phosphoenolpyruvate 0.21 0.59
xPG3 3-Phosphoglycerate 5.75 1.35
xPY R Pyruvate 0.9 0.03
xAceA Isocitrate lyase 4.68E-03 1.03E-01
xAceB Malate synthase A 1.40E-03 3.09E-02
xAceK Isocitrate dehydrogenase 1.40E-04 3.09E-03

phosphatase/kinase
xAcoa2act Enzyme for the reaction 1.00E-03 3.00E-04

from ACoA to ACT
xAcs Acetyl-CoA synthetase 3.62E-05 3.35E-04
xAkg2mal Enzyme for the reaction 1.00E-03 2.10E-03

from AKG to MAL
xCAMPdegr Degradation of cAMP 1.00E-03 1.00E-03

continued on the next page . . .

25



. . . Table S3 continued.

Name of Description Data on Data on
state glucose acetate

xCya Adenylate cyclase 1.00E-03 1.00E-03
xEmp Enzyme for the reversible reaction 1.14E-02 9.64E-03

between FBP and PG3
xEno Enolase 1.14E-02 6.21E-03
xFdp Fructose-1,6-bisphosphatase I 7.48E-05 2.44E-04
xGltA Citrate synthase 2.93E-04 1.01E-03
xIcd Unphosphorylated isocitrate 4.28E-03 2.47E-03

dehydrogenase
xIcd−P Phosphorylated isocitrate 1.78E-04 7.41E-03

dehydrogenase
xMaeAB Malic enzymes MaeAB 1.00E-03 3.40E-03
xMdh Malate dehydrogenase 4.91E-04 1.56E-03
xPckA Phosphoenolpyruvate carboxykinase 3.37E-04 2.78E-03
xPdh Pyruvate dehydrogenase 1.00E-03 3.79E-04
xPfkA 6-phosphofructokinase I 2.42E-04 1.50E-04
xPpc Phosphoenolpyruvate carboxylase 3.78E-04 1.06E-04
xPpsA Phosphoenolpyruvate synthase 1.00E-03 1.30E-02
xPykF Pyruvate kinase I 2.50E-03 5.47E-04
xEIIA Unphosphorylated PTS protein EIIA 9.65E-02 1.99E-03
xEIIA−P Phosphorylated PTS protein EIIA 3.48E-03 9.80E-02
xEIICB PTS protein EIICB 3.00E-03 3.00E-03
xCra Free Cra 2.97E-04 6.99E-03
xCraFBP Cra bound to fructose-1,6- 6.99E-03 2.97E-04

bisphosphate
xCrp Free Crp 5.96E-03 1.33E-03
xCrpcAMP Crp bound to cyclic AMP 1.33E-03 5.96E-03
xIclR IclR 7.29E-03 7.29E-03
xPdhR free PdhR 1.13E-03 6.17E-03
xPdhRPY R PdhR bound to pyruvate 6.17E-03 1.13E-03
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2.3 Derivation of complete data sets of rates

Table S4 lists the values of the steady state rates f on glucose and acetate. These values
are either experimental data, or, where experimental data was not available, estimated
from experimental data through the inclusion of additional biological knowledge.

Two complete sets of metabolic reaction rates (covering the rates fE, fPTS and fBM)
were provided by the results of 13C tracer experiments on glucose (Fuhrer et al, 2005)
and acetate (Zhao et al, 2004).

To obtain two complete data sets of dilution rates fdil of the compounds x due to cell
growth, we used the model fdil = µx to calculate the dilution rates from the steady
state concentrations of the proteins and metabolites on glucose and acetate, and from
the known growth rate µ on these substrates. Similarly, to obtain two complete data
sets of degradation rates fdegr of the proteins x, we used the model fdegr = pD,kdegr

x to
calculate the degradation rates from the steady state protein concentrations on glucose
and acetate, assuming the same degradation rate pD,kdegr

for all proteins. The protein
dilution and degradation rates, together with the steady state assumption fG = fdil +
fdegr, are used to calculate the steady state gene expression rates fG on glucose and
acetate.

The concentrations of the proteins EIIA and Icd are distributed over two state vari-
ables; one of these variables denotes the phosphorylated form, and the other the un-
phosphorylated form. Because the degrees of phosphorylation of the proteins EIIA and
Icd have been determined experimentally (Bettenbrock et al, 2006; Walsh & Koshland,
1984), the ratio of the these proteins’ steady state phosphorylation and dephosphory-
lation rates between growth on glucose and acetate is also known. However, the mag-
nitudes of these rates are uncertain. We observed in preliminary simulations that the
phosphorylation and dephosphorylation rates need to be sufficiently fast to not introduce
oscillations into the metabolic network. Therefore, we set the steady state phosphory-
lation and desphosphorylation rates of the proteins EIIA and Icd to sufficiently high
magnitudes in order to avoid such oscillations.

Similarly, as the steady state concentrations of the effector-bound and free forms of
the transcription factors Cra, Crp, and PdhR have been estimated in Section 2.2, the
ratios of these two forms’ concentrations between growth on glucose and acetate are
also known. Therefore, the ratios of both the association and dissociation rates between
growth on glucose and acetate are known; however, the magnitudes of these rates are
uncertain. In order to allow the binding states of the transcription factors to track the
metabolite concentrations, the ratio of association and dissociation rates was scaled to
the metabolic time scale, which is significantly faster than the slow time scale on which
the TF’s regulation of gene expression operates.
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Table S4: Comprehensive list of the steady state rates f . The units of the rates are
h−1 for the growth rates; g

l·s for the substrate uptake and excretion rates of

the cell population; µmol
gDW ·s

for the enzymatic reaction rates fE,· (except the

AceK kinase and phosphatase reactions), for the PTS reactions fPTS,·, for the
dilution rates of metabolites fD,·, for the association and dissociation rates
of transcription factors to metabolites fTF,·, and for the biomass production
rates fBM,·;

gProt

gDW ·s
for the AceK kinase and phosphatase reactions, for the gene

expression rates fG,· and for the protein dilution+degradation rates fD,· .

Name of Description Data on Data on
rate glucose acetate

fENV,growth Growth rate 0.64 0.20
fENV,GLCup Glucose uptake rate - -

of the population
fENV,ACTup Acetate uptake rate - -

of the population
fENV,ACTex Acetate excretion rate - -

of the population
fE,AceA Metabolic flux through AceA 3.52E-04 0.666
fE,AceB Metabolic flux through AceB 3.52E-04 0.666
fE,AceK−Ki Rate of the AceK-kinase reaction 6.61E-04 1.91E-02
fE,AceK−Ph Rate of the AceK-phosphatase 6.61E-04 1.91E-02

reaction
fE,Acoa2act Metabolic flux through Acoa2act, 1.33 0.25

Cell dry weight-normalized
acetate excretion rate

fE,Acs Metabolic flux through Acs, 0 3.45
Cell dry weight-normalized
acetate uptake rate

fE,Akg2mal Conversion rate of AKG to MAL 0.443 2.32
fE,CAMPdegr Degradation rate of cAMP 0.667 0.976
fE,Cya Production rate of cAMP 0.667 0.976
fE,Emp Conversion rate 3.87 -0.188

between FBP and PG3
fE,Eno Metabolic flux through Eno 3.59 -0.277
fE,Fdp Metabolic flux through Fdp 3.00E-02 9.89E-02
fE,GltA Metabolic flux through GltA 0.570 2.38
fE,Icd Metabolic flux through Icd 0.569 1.717
fE,MaeAB Metabolic flux through MaeAB 6.88E-02 0.227
fE,Mdh Metabolic flux through Mdh 0.443 2.76
fE,PckA Metabolic flux through PckA 2.58E-02 0.282

continued on the next page . . .
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. . . Table S4 continued.

Name of Description Data on Data on
state glucose acetate

fE,Pdh Metabolic flux through Pdh 2.484 5.50E-02
fE,PfkA Metabolic flux through PfkA 1.966 1.00E-02
fE,Ppc Metabolic flux through Ppc 0.610 3.20E-03
fE,PpsA Metabolic flux through PpsA 1.30E-03 1.61E-02
fE,PykF Metabolic flux through PykF 0.695 1.00E-04
fPTS,r1 Metabolic flux through

the PTS reaction r1 2.22 0
fPTS,r4 Metabolic flux through

the PTS reaction r4, 2.22 0
Cell dry weight-normalized
glucose uptake rate

fTF,Cra Combined association & 0 0
dissociation rates
between Cra and FBP

fTF,Crp Combined association & 0 0
dissociation rates
between Crp and cAMP

fTF,PdhR Combined association & 0 0
dissociation rates
between PdhR and PYR

fG,aceA aceA expression rate 9.63E-07 8.61E-06
fG,aceB aceB expression rate 2.89E-07 2.58E-06
fG,aceK aceK expression rate 2.89E-08 2.58E-07
fG,acoa2act acoa2act expression rate 0 0
fG,acs acs expression rate 7.53E-09 2.81E-08
fG,akg2mal akg2mal expression rate 2.06E-07 1.75E-07
fG,campdegr campdegr expression rate 0 0
fG,cra cra expression rate 0 0
fG,crp crp axpression rate 0 0
fG,cya cya expression rate 0 0
fG,EIIA eiia expression rate 0 0
fG,EIICB eiicb expression rate 0 0
fG,emp emp expression rate 2.37E-06 8.10E-07
fG,eno eno expression rate 2.37E-06 5.22E-07
fG,fdp fdp expression rate 1.56E-08 2.05E-08
fG,gltA gltA expression rate 6.09E-08 8.45E-08
fG,icd icd expression rate 9.17E-07 8.26E-07
fG,maeAB maeAB expression rate 2.06E-07 2.84E-07

continued on the next page . . .
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. . . Table S4 continued.

Name of Description Data on Data on
state glucose acetate

fG,iclr iclr expression rate 0 0
fG,mdh mdh expression rate 1.02E-07 1.31E-07
fG,pckA pckA expression rate 7.01E-08 2.34E-07
fG,pdh pdh expression rate 2.08E-07 3.18E-08
fG,pdhr pdhR expression rate 0 0
fG,pfkA pfkA expression rate 5.04E-08 1.26E-08
fG,ppc ppc expression rate 7.86E-08 8.89E-09
fG,ppsA ppsA expression rate 2.06E-07 1.09E-06
fG,pykF pykF expression rate 5.20E-07 4.59E-08
fD,ACoA Dilution rate of ACoA 6.22E-05 1.06E-04
fD,AKG Dilution rate of AKG 3.56E-05 6.11E-05
fD,cAMP Dilution rate of cAMP 3.56E-05 2.22E-04
fD,FBP Dilution rate of FBP 1.17E-03 1.56E-05
fD,G6P Dilution rate of G6P 3.29E-04 6.50E-05
fD,GLX Dilution rate of GLX 1.78E-12 7.50E-05
fD,ICT Dilution rate of ICT 2.40E-07 8.56E-05
fD,MAL Dilution rate of MAL 6.40E-04 3.69E-04
fD,OAA Dilution rate of OAA 8.89E-06 3.89E-06
fD,PEP Dilution rate of PEP 3.73E-05 3.28E-05
fD,PG3 Dilution rate of PG3 1.02E-03 7.50E-05
fD,PY R Dilution rate of PYR 1.60E-04 1.67E-06
fD,AceA Degr.&dilution rate of AceA 9.63E-07 8.61E-06
fD,AceB Degr.&dilution rate of AceB 2.89E-07 2.58E-06
fD,AceK Degr.&dilution rate of AceK 2.89E-08 2.58E-07
fD,Acoa2act Degr.&dilution rate of Acoa2act 0 0
fD,Acs Degr.&dilution rate of Acs 7.53E-09 2.81E-08
fD,Akg2mal Degr.&dilution rate of Akg2mal 2.06E-07 1.75E-07
fD,CAMPdegr Degr.&dilution rate of CAMPdegr 0 0
fD,Cra Degr.&dilution rate of Cra 0 0
fD,CraFBP Degr.&dilution rate of CraFBP 0 0
fD,Crp Degr.&dilution rate of Crp 0 0
fD,CrpcAMP Degr.&dilution rate of CrpcAMP 0 0
fD,Cya Degr.&dilution rate of Cya 0 0
fD,EIIA Degr.&dilution rate of EIIA 0 0
fD,EIIA−P Degr.&dilution rate of EIIA-P 0 0
fD,EIICB Degr.&dilution rate of EIICB 0 0
fD,Emp Degr.&dilution rate of Emp 2.37E-06 8.10E-07
fD,Eno Degr.&dilution rate of Eno 2.37E-06 5.22E-07

continued on the next page . . .
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. . . Table S4 continued.

Name of Description Data on Data on
state glucose acetate

fD,Fdp Degr.&dilution rate of Fdp 1.56E-08 2.05E-08
fD,GltA Degr.&dilution rate of GltA 6.09E-08 8.45E-08
fD,Icd Degr.&dilution rate of Icd 8.80E-07 2.06E-07
fD,Icd−P Degr.&dilution rate of Icd-P 3.67E-08 6.19E-07
fD,IclR Degr.&dilution rate of IclR 0 0
fD,MaeAB Degr.&dilution rate of MaeAB 2.06E-07 2.84E-07
fD,Mdh Degr.&dilution rate of Mdh 1.02E-07 1.31E-07
fD,PckA Degr.&dilution rate of PckA 7.01E-08 2.34E-07
fD,Pdh Degr.&dilution rate of Pdh 2.08E-07 3.18E-08
fD,PdhR Degr.&dilution rate of PdhR 0 0
fD,PdhRPY R Degr.&dilution rate of PdhRPYR 0 0
fD,PfkA Degr.&dilution rate of PfkA 5.04E-08 1.26E-08
fD,Ppc Degr.&dilution rate of Ppc 7.86E-08 8.89E-09
fD,PpsA Degr.&dilution rate of PpsA 2.06E-07 1.09E-06
fD,PykF Degr.&dilution rate of PykF 5.20E-07 4.59E-08
fBM,ACoA Biomass flux from ACoA 0.658 0.206
fBM,AKG Biomass flux from AKG 0.196 6.11E-02
fBM,G6P Biomass flux from G6P 0.284 8.89E-02
fBM,OAA Biomass flux from OAA 0.320 0.100
fBM,PEP Biomass flux from PEP 8.89E-02 2.78E-02
fBM,PG3 Biomass flux from PG3 0.284 8.89E-02
fBM,PY R Biomass flux from PYR 0.498 0.156
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2.4 Parameter values

This section contains Table S5, which lists the parameter values determined through
application of the divide–and–conquer approach, described in Section 2.1, on the derived
data sets, presented in Sections 2.2 and 2.3.

Table S5: Comprehensive list of the parameters p, their mechanistic meanings, and their
values as determined by the divide–and–conquer approach (see Section 2) on
the data presented in Tables S3 and S4..

Parameter Description Value

pENV,MACT
Molar mass of acetate 180.2 gACT mol

−1

pENV,MGLC
Molar mass of glucose 60 gGLCmol

−1

pENV,UC Unit conversion 9.5E-07 gDW (µ[OD])−1

pAceA,kcat Specific activity 1.03E+04 µmol (gProt s)
−1

pAceA,n Number of subunits 4
pAceA,L Allosteric constant 5.01E+04
pAceA,KICT

Affinity constant 0.022 µmol gDW
−1

pAceA,KPEP
Affinity constant 0.055 µmol gDW

−1

pAceA,KPG3
Affinity constant 0.72 µmol gDW

−1

pAceA,KAKG
Affinity constant 0.827 µmol gDW

−1

pAceB,kcat Specific activity 47.8 µmol (gProt s)
−1

pAceB,KGLX
Affinity constant 0.95 µmol gDW

−1

pAceB,KACoA
Affinity constant 0.755 µmol gDW

−1

pAceB,KGLXACoA
Affinity constant 0.719 µmol gDW

−1

pAceK,kcat,ki
Specific activity 3.4E+12 s−1

pAceK,kcat,ph
Specific activity 1.7E+09 s−1

pAceK,n Number of subunits 2
pAceK,L Allosteric constant 1.0E+08
pAceK,KIcd

Affinity constant 0.043 gProt gDW
−1

pAceK,KIcd−P
Affinity constant 0.643 gProt gDW

−1

pAceK,KPEP
Affinity constant 0.539 µmol gDW

−1

pAceK,KPY R
Affinity constant 0.038 µmol gDW

−1

pAceK,KOAA
Affinity constant 0.173 µmol gDW

−1

pAceK,KGLX
Affinity constant 0.866 µmol gDW

−1

pAceK,KAKG
Affinity constant 0.82 µmol gDW

−1

pAceK,KPG3
Affinity constant 1.57 µmol gDW

−1

pAceK,KICT
Affinity constant 0.137 µmol gDW

−1

pAcoa2act,kcat Specific activity 3079 µmol (gProt s)
−1

pAcoa2act,n Number of subunits 2
pAcoa2act,L Allosteric constant 6.39E+05
pAcoa2act,KACoA

Affinity constant 0.022 µmol gDW
−1

continued on the next page . . .
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. . . Table S5 continued.

Parameter Description Value

pAcoa2act,KPY R
Affinity constant 0.022 µmol gDW

−1

pAcs,kcat Specific activity 340 µmol (gProt s)
−1

pAcs,KACT
Affinity constant 1.0E-03 gACT l

−1

pAkg2mal,kcat Specific activity 1530 µmol (gProt s)
−1

pAkg2mal,KAKG
Affinity constant 0.548 µmol gDW

−1

pCAMPdegr,kcat Specific activity 1 µmol (gProt s)
−1

pCAMPdegr,KcAMP
Affinity constant 0.1 µmol gDW

−1

pCya,kcat Specific activity 993 µmol (gProt s)
−1

pCya,KEIIA−P
Affinity constant 1.7E-03 gProt gDW

−1

pEmp,kcat,f
Specific activity 1011 µmol (gProt s)

−1

of forward reaction
pEmp,kcat,r Specific activity of 857 µmol (gProt s)

−1

of reverse reaction
pEmp,KFBP

Affinity constant 5.92 µmol gDW
−1

pEmp,KPG3
Affinity constant 16.6 µmol gDW

−1

pEno,kcat,f
Specific activity 705 µmol (gProt s)

−1

of forward reaction
pEno,kcat,r Specific activity 530 µmol (gProt s)

−1

of reverse reaction
pEno,KPG3

Affinity constant 4.76 µmol gDW
−1

pEno,KPEP
Affinity constant 1.11 µmol gDW

−1

pFdp,kcat Specific activity 5676 µmol (gProt s)
−1

pFdp,n Number of subunits 4
pFdp,L Allosteric constant 4.0E+06
pFdp,KFBP

Affinity constant 3.0E-03 µmol gDW
−1

pFdp,KPEP
Affinity constant 0.3 µmol gDW

−1

pGltA,kcat Specific activity 1614 µmol (gProt s)
−1

pGltA,KOAA
Affinity constant 0.029 µmol gDW

−1

pGltA,KACoA
Affinity constant 0.212 µmol gDW

−1

pGltA,KOAAACoA
Affinity constant 0.029 µmol gDW

−1

pGltA,KAKG
Affinity constant 0.63 µmol gDW

−1

pIcd,kcat Specific activity 695 µmol (gProt s)
−1

pIcd,n Number of subunits 2
pIcd,L Allosteric constant 127
pIcd,KICT

Affinity constant 1.6E-04 µmol gDW
−1

pIcd,KPEP
Affinity constant 0.334 µmol gDW

−1

pMaeAB,kcat Specific activity 1879 µmol (gProt s)
−1

pMaeAB,n Number of subunits 1.33
pMaeAB,L Allosteric constant 1.04E+05

continued on the next page . . .
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. . . Table S5 continued.

Parameter Description Value

pMaeAB,KMAL
Affinity constant 6.24E-03 µmol gDW

−1

pMaeAB,KACoA
Affinity constant 3.64 µmol gDW

−1

pMaeAB,KcAMP
Affinity constant 6.54 µmol gDW

−1

pMdh,kcat Specific activity 5437 µmol (gProt s)
−1

pMdh,n Hill coefficient 1.7
pMdh,KMAL

Affinity constant 10.1 µmol gDW
−1

pPckA,kcat Specific activity 377 µmol (gProt s)
−1

pPckA,KOAA
Affinity constant 0.184 µmol gDW

−1

pPckA,KPEP
Affinity constant 1000 µmol gDW

−1

pPdh,kcat Specific activity 5479 µmol (gProt s)
−1

pPdh,n Number of subunits 2.65
pPdh,L Allosteric constant 3.4
pPdh,KPY R

Affinity constant 0.128 µmol gDW
−1

pPdh,KI,PY R
Affinity constant 0.231 µmol gDW

−1

pPdh,KGLX
Affinity constant 0.218 µmol gDW

−1

pPfkA,kcat Specific activity 5.39E+05 µmol (gProt s)
−1

pPfkA,n Number of subunits 4
pPfkA,L Allosteric constant 9.5E+07
pPfkA,KG6P

Affinity constant 0.022 µmol gDW
−1

pPfkA,KPEP
Affinity constant 0.138 µmol gDW

−1

pPpc,kcat Specific activity 1.49E+04 µmol (gProt s)
−1

pPpc,n Number of subunits 3
pPpc,L Allosteric constant 5.2E+06
pPpc,KPEP

Affinity constant 0.048 µmol gDW
−1

pPpc,KFBP
Affinity constant 0.408 µmol gDW

−1

pPpsA,kcat Specific activity 1.32 µmol (gProt s)
−1

pPpsA,n Number of subunits 2
pPpsA,L Allosteric constant 1.0E-79
pPpsA,KPY R

Affinity constant 1.77E-03 µmol gDW
−1

pPpsA,KPEP
Affinity constant 1.0E-03 µmol gDW

−1

pPykF,kcat Specific activity 1.37E+04 µmol (gProt s)
−1

pPykF,n Number of subunits 4
pPykF,L Allosteric constant 1.0E+05
pPykF,KPEP

Affinity constant 5 µmol gDW
−1

pPykF,KFBP
Affinity constant 0.413 µmol gDW

−1

pPTS,k1 Specific activity 116 gDW (gProt s)
−1

pPTS,km1 Specific activity 46.3 gDW (gProt s)
−1

pPTS,k4 Specific activity 2520 µmol (gProt s)
−1

pPTS,KEIIA
Affinity constant 8.5E-03 gProt gDW

−1

continued on the next page . . .
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. . . Table S5 continued.

Parameter Description Value

pPTS,KGLC
Affinity constant 1.2E-03 gGLC l

−1

pCra,scale Specific activity 100 gProt (µmol s)−1

pCra,KFBP
Affinity constant 1.36 µmol gDW

−1

pCra,n Hill coefficient 2
pCrp,scale Specific activity 1.0E+08 gProt (µmol s)−1

pCrp,KcAMP
Affinity constant 0.895 µmol gDW

−1

pCrp,n Hill coefficient 1
pPdhR,scale Specific activity 100 gProt (µmol s)−1

pPdhR,KPY R
Affinity constant 0.164 µmol gDW

−1

pPdhR,n Hill coefficient 1
paceBAK,aceBfactor Scaling factor 0.3
paceBAK,aceKfactor Scaling factor 0.03
paceBAK,kcat,IclR

Specific activity 9.3E-04 s−1

paceBAK,KDNA
Affinity constant 2.19 [AU ] gDW

−1

paceBAK,DNA DNA concentration 1 [AU ] gDW
−1

paceBAK,KPY R
Affinity constant 0.897 µmol gDW

−1

paceBAK,KPY Rprime
Affinity constant 3.01E-03 µmol gDW

−1

paceBAK,KGLX
Affinity constant 4.88E-03 µmol gDW

−1

paceBAK,L Allosteric constant 923
paceBAK,vCra,unbound

Basal expression rate 1.9E-09 gProt(gDW s)−1

paceBAK,vCra,bound
Max. expression rate 2.0E-06 gProt(gDW s)−1

paceBAK,KCra
Affinity constant 3.65E-03 gProt gDW

−1

paceBAK,vCrp,unbound
Max. expression rate 2.0E-08 gProt(gDW s)−1

paceBAK,vCrp,bound
Basal expression rate 2.3E-10 gProt(gDW s)−1

paceBAK,KCrp
Affinity constant 0.341 gProt gDW

−1

pacs,vCrp,unbound
Basal expression rate 0 gProt(gDW s)−1

pacs,vCrp,bound
Max. expression rate 4.0E-08 gProt(gDW s)−1

pacs,n Hill coefficient 2.31
pacs,KCrp

Affinity constant 4.7E-03 gProt gDW
−1

pakg2mal,vCrp,unbound
Basal expression rate 0 gProt(gDW s)−1

pakg2mal,vCrp,bound
Max. expression rate 1.4E-06 gProt(gDW s)−1

pakg2mal,KCrp
Affinity constant 0.091 gProt gDW

−1

pakg2mal,n Hill coefficient 0.74
pemp,vCra,unbound

Max. expression rate 6.1 E-07 gProt(gDW s)−1

pemp,vCra,bound
Basal expression rate 0 gProt(gDW s)−1

pemp,KCra
Affinity constant 0.09 gProt gDW

−1

pemp,vCrp,unbound
Basal expression rate 0 gProt(gDW s)−1

pemp,vCrp,bound
Max. expression rate 4.7 E-07 gProt(gDW s)−1

pemp,KCrp
Affinity constant 0.012 gProt gDW

−1
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Parameter Description Value

peno,vCra,unbound
Max. expression rate 6.7 E-07 gProt(gDW s)−1

peno,vCra,bound
Basal expression rate 0 gProt(gDW s)−1

peno,KCra
Affinity constant 0.016 gProt gDW

−1

pfdp,vCra,unbound
Basal expression rate 0 gProt(gDW s)−1

pfdp,vCra,bound
Max. expression rate 2.1E-08 gProt(gDW s)−1

pfdp,KCra
Affinity constant 1.18E-03 gProt gDW

−1

pgltA,vCrp,unbound
Basal expression rate 0 gProt(gDW s)−1

pgltA,vCrp,bound
Max. expression rate 6.5E-07 gProt(gDW s)−1

pgltA,KCrp
Affinity constant 0.04 gProt gDW

−1

pgltA,n Hill coefficient 1.07
picd,vCra,unbound

Basal expression rate 1.1E-07 gProt(gDW s)−1

picd,vCra,bound
Max. expression rate 8.5E-07gProt(gDW s)−1

picd,KCra
Affinity constant 1.17E-03 gProt gDW

−1

pmdh,vCrp,unbound
Basal expression rate 0 gProt(gDW s)−1

pmdh,vCrp,bound
Max. expression rate 1.3 E-06 gProt(gDW s)−1

pmdh,KCrp
Affinity constant 0.06 gProt gDW

−1

ppckA,vCra,unbound
Basal expression rate 0 gProt(gDW s)−1

ppckA,vCra,bound
Max. expression rate 3.7 E-07 gProt(gDW s)−1

ppckA,KCra
Affinity constant 5.35E-03 gProt gDW

−1

ppdh,vPdhR,unbound
Max. expression rate 7.7 E-08 gProt(gDW s)−1

ppdh,vPdhR,bound
Basal expression rate 2.8 E-10 gProt(gDW s)−1

ppdh,KPdhR
Affinity constant 3.4E-03 gProt gDW

−1

ppfkA,vCra,unbound
Max. expression rate 1.4 E-06 gProt(gDW s)−1

ppfkA,vCra,bound
Basal expression rate 1.1 E-08 gProt(gDW s)−1

ppfkA,KCra
Affinity constant 6.3E-07 gProt gDW

−1

pppsA,vCra,unbound
Basal expression rate 0 gProt(gDW s)−1

pppsA,vCra,bound
Max. expression rate 3.3E-06 gProt(gDW s)−1

pppsA,KCra
Affinity constant 0.017 gProt gDW

−1

ppykF,vCra,unbound
Max. expression rate 1.6 E-07 gProt(gDW s)−1

ppykF,vCra,bound
Basal expression rate 8.8 E-10 gProt(gDW s)−1

ppykF,KCra
Affinity constant 2.3E-03 gProt gDW

−1

pD,kdegr
Universal protein 2.8E-05 s−1

degradation rate
pBM,kexpr Gene expression rate 2.0E+04 s

constant
pBM,µACT

Growth rate on acetate 5.6E-05 s−1

pBM,µGLC
Growth rate on glucose 1.8E-04 s−1

pBM,GLCACoA
1st order rate constant 1.88 s−1

pBM,GLCAKG
1st order rate constant 0.978 s−1

continued on the next page . . .
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. . . Table S5 continued.

Parameter Description Value

pBM,GLCG6P
1st order rate constant 0.154 s−1

pBM,GLCOAA
1st order rate constant 6.4 s−1

pBM,GLCPEP
1st order rate constant 0.423 s−1

pBM,GLCPG3
1st order rate constant 0.049 s−1

pBM,GLCPY R
1st order rate constant 0.553 s−1

pBM,ACTACoA
1st order rate constant 0.108 s−1

pBM,ACTAKG
1st order rate constant 0.056 s−1

pBM,ACTG6P
1st order rate constant 0.076 s−1

pBM,ACTOAA
1st order rate constant 1.43 s−1

pBM,ACTPEP
1st order rate constant 0.047 s−1

pBM,ACTPG3
1st order rate constant 0.066 s−1

pBM,ACTPY R
1st order rate constant 5.185 s−1
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3 Sensitivity analysis

The sensitivities of each of the two reproduced steady states with respect to small pa-
rameter perturbations were approximated through

Si,j =
∆xi/xi
∆pj/pj

≈ (x+
i − x−i )/xi

(1.01 pj − 0.99 pj)/pj
=
x+
i − x−i
0.02xi

,

with xi the nominal steady state value and x+
i and x−i the values resulting from a

1% increase or decrease, respectively, of the parameter value pj. As a heatmap of the
resulting 47x193 sensitivity matrix S is too large for convenient inspection, we reduced
the size of S by grouping the sensitivities of those parameters that appear in the same
rate equation fk. For this grouping, we used the size-independent overall variability

Si,k =
1

nk

∑
j | pj∈fk

S 2
i,j

as sensitivity statistics, with nk the number of parameters appearing in fk. The results
of these local sensitivity analyses, one for each of the two steady states, are plotted in
Figure S2.

This figure reveals that in general, protein and metabolite concentrations respond
differently to parameter perturbations. Protein concentrations are most significantly
affected by perturbations of the parameters describing their gene’s expression but are
rather marginally affected by other parameter perturbations, causing the red diagonal
line of high protein sensitivities in Figure S2. In contrast, the sensitivities of the metabo-
lite concentrations do not form such a line. Therefore, contrary to what might have been
expected, the sensitivities of metabolite concentrations to parameter variations of their
topological enzyme neighbors and to more distant perturbation are about the same. We
suspect that this property of the metabolites’ sensitivities is due to the model’s densely
interconnected enzymatic regulation.

A further observation is that sensitivities that are high on glucose are often low on
acetate and vice versa, probably because many reactions are very active in one condition
but much less so in the other.
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Figure S2: Sensitivity statistics of the steady states with respect to 1% parameter per-
turbations. The used statistics condenses the sensitivities of all parameters
appearing in the same rate equation to a single value.
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4 Simulation results

In this section, we present the simulated time profiles of the intracellular metabolites
(Figure S3), enzymes (Figure S4), rates (Figures S5 and S6), the phosphorylation state
of the proteins EIIA and Icd, and the TF activities (Figure S7). Figure S8 contains
a subset of these time profiles to illustrate the connection between the available extra-
cellular carbon sources, the concentrations of the intracellular signal metabolites, and
the activities of their target TFs. These time profiles are based on the parameter vector
listed in Table S5. Note that due to the uncertainty in the parameter values, the ambigu-
ity in the selection of rate laws, and possible effects of not modeled cellular regulations,
i.e. those ensuring the here omitted energy, cofactor etc. balances, onto the simulated
trajectories, these profiles cannot be considered a quantitatively accurate reproduction
of the in vivo time profiles. Instead, these profiles are meant to demonstrate that with
the chosen parameters, (i) all compound concentrations and rates approach the proper
steady state levels and (ii) remain within physiologically reasonable bounds throughout
the transitions.

An aspect worth noting is the spiking of some metabolite concentrations following en-
vironmental changes. Such fast changes in metabolite levels have already been observed
in time-resolved metabolomics experiments (Bettenbrock et al, 2006; Chassagnole et al,
2002). In some cases such as OAA, these spikes might be an artifact of the modeling,
caused by the fast change of the used first order rate constants upon a change in envi-
ronmental conditions (see Section 1.9). In other cases, however, the spikes arise from
the interplay of mechanistically modeled interactions. For instance, PEP and PYR spike
because they are coupled to glucose uptake via the PTS system. These spikes propagate
through the system: G6P’s small upward spike following the change from glucose to
acetate is a consequence of the large upward PEP spike quickly inhibiting the G6P–
consuming reaction (in the model, PfkA) while quickly activating the G6P–producing
(back-)reaction from FBP (in the model, Fdp); G6P’s steady state convergence after
that small, initial spike is slow because G6P is immediately formed by the uptake of
glucose but needs many reaction steps to be synthesized from acetate.

Another aspect worth mentioning is that the duration of the transition period between
balanced growth on either substrate is primarily determined by the growth rates and is
therefore robust to the inherent uncertainty in the model. The reason for this is that
the speed of steady state convergence is given by the slowest significant rates of the
model, which are the enzyme dilution rates due to growth. This observation suggests
that with µ the growth rate on the condition adapting to, a lower bound (that neglects
active protein degradation) for the transcriptional adaptation time of bacteria could be
quantified, e.g. in the form of a ’minimal half-adaptation time’ T1/2 = µ−1ln(2).

40



0

1

2
ACoA

0

1

2 AKG 

0

2

4
cAMP

0

5

10

FBP 

0

1

2
G6P 

0

10

20

GLX 

0

1

ICT 

0

5

MAL 

0

0.5

OAA 

0

0.5

PEP 

0

5

10

PG3 

0

1

2

PYR 

C
on

c.
 [µ

m
ol

/g
   

   
   

 ]
D

W

C
on

c.
 [µ

m
ol

/g
   

   
   

 ]
D

W

C
on

c.
 [µ

m
ol

/g
   

   
   

 ]
D

W

C
on

c.
 [µ

m
ol

/g
   

   
   

 ]
D

W

C
on

c.
 [µ

m
ol

/g
   

   
   

 ]
D

W

C
on

c.
 [µ

m
ol

/g
   

   
   

 ]
D

W

C
on

c.
 [µ

m
ol

/g
   

   
   

 ]
D

W

C
on

c.
 [µ

m
ol

/g
   

   
   

 ]
D

W

C
on

c.
 [µ

m
ol

/g
   

   
   

 ]
D

W

C
on

c.
 [µ

m
ol

/g
   

   
   

 ]
D

W

C
on

c.
 [µ

m
ol

/g
   

   
   

 ]
D

W

C
on

c.
 [µ

m
ol

/g
   

   
   

 ]
D

W

0 20 40
Time [h]

0 20 40
Time [h]

0 20 40
Time [h]

0 20 40
Time [h]

0 20 40
Time [h]

0 20 40
Time [h]

0 20 40
Time [h]

0 20 40
Time [h]

0 20 40
Time [h]

0 20 40
Time [h]

0 20 40
Time [h]

0 20 40
Time [h]

Figure S3: Simulated intracellular metabolite concentrations. The vertical blue lines
indicate the time instants of external changes to the available carbon sources
(see Figure S8 or main paper). The concentrations approach the measured
steady state values listed in Table S3.
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Figure S4: Simulated enzyme concentrations. The vertical blue lines indicate the time
instants of external changes to the available carbon sources (see Figure S8 or
main paper). The concentrations approach the measured steady state values
listed in Table S3.
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Figure S5: Simulated enzymatic reaction rates. The vertical blue lines indicate the time
instants of external changes to the available carbon sources (see Figure S8 or
main paper). The rates approach the measured steady state values listed in
Table S4.
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Figure S6: Simulated biomass reaction rates. The vertical blue lines indicate the time
instants of external changes to the available carbon sources (see Figure S8 or
main paper). The rates approach the measured steady state values listed in
Table S4.
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Figure S7: Simulated phosphorylation states of the proteins EIIA and Icd, and simulated
TF activities. The vertical blue lines indicate the time instants of external
changes to the available carbon sources (see Figure S8 or main paper). The
phosphorylation states and TF activities approach the measured steady state
values listed in Table S3.
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5 Contributions of individual interactions to the overall
response

The model presented in the previous sections of this Supplementary Information offers
a consistent explanation of how a multitude of known molecular interactions fit into
a coherent systems picture. In the model, the interactions work together like gear
wheels that mesh with one another to adapt central metabolism between growth on the
glycolytic substrate glucose and the gluconeogenic substrate acetate, as demonstrated
in the main paper.

A particularly interesting question is which of the modeled interactions are necessary
to perform the adaptation, and which are not engaged in the adaptation. In general, the
adaptation rests on the collective action of many interactions such that the successive
removal of these interactions leads to gradually worse adaptations (the term ’worse’ here
means an increase in the distance between the measured steady state and the simulated
steady state assumed after the carbon source change).

Naturally, some interactions have a more important contribution to the overall re-
sponse than others. A quantification of the contributions of individual interactions to
the overall response depends on the chosen rate laws and parameters, which are to some
degree uncertain. Therefore, we here discuss the qualitative importance of individual
interactions to the proper functioning of the distributed sensing and adjustment mech-
anism. A few interactions are essential to this adaptation, most interactions play a
’supporting’ role such that their removal can be to some degree compensated by the
collective action of the remaining interactions, and some interactions are present in the
model but are not engaged in the adaptation mechanism, as discussed below.

The contributions of individual interactions to the overall response operate on two time
scales, the fast time scale of enzyme regulations and the slow time scale of transcriptional
regulations.

Correlation of flux signalling-metabolite levels with metabolic fluxes To ensure that
the levels of flux-signalling metabolites indicate the metabolic flux through a pathway,
the kinetics of the enzymes surrounding these metabolites must establish a correlation
between the metabolite levels and the fluxes. These correlations are established through
either of the general motifs pathway usage or flux direction, as presented in the main
paper. In molecular detail, the distinct and thus informative levels of the flux–signalling
metabolites are established, through the two general motifs, as follows.

• To establish a low level of cAMP on glucose, the phosphorylated form of the PTS
protein EIIA, EIIA-P, which activates cAMP synthesis via the enzyme Cya, must
be sufficiently low. In turn, a low level of EIIA-P arises if the affinity constant
of the PTS’s glucose uptake reaction for the PTS protein EIIA, pPTS,KEIIA

, is low
enough.

• To establish a high level of FBP on glucose, the affinity constant for FBP of the
FBP–consuming enzyme ’Emp’, pEmp,KFBP

, must be sufficiently high.
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• To establish a high level of PYR on glucose, the affinity constant for PYR of the
PYR–consuming enzyme Pdh, pPdh,KPY R

, must be sufficiently high.

• To establish a low level of GLX on glucose, the glyoxylate shunt may not be in-
duced. At the ICT branch point, metabolic flux is directed to the lower TCA if
Icd’s phosphorylated form, Icd-P, is sufficiently low. The phosphorylation state of
Icd is highly regulated by the AceK kinase and phosphatase reactions. Essentially,
the levels of the regulating metabolites AKG, GLX, ICT, OAA, PEP, PG3 and
PYR and AceK’s affinity constants for these effectors must be balanced such that
for these effectors’ steady state levels on glucose, the phosphatase reaction domi-
nates to such an extent that Icd-P levels are negligible. Furthermore, to favor the
lower TCA route over the glyoxylate shunt route, the affinity constant for ICT of
the enzyme AceA (pAceA,KICT

), which catalyzes the glyoxylate shunt’s first reac-
tion, must be markedly higher than the affinity constant for ICT of the enzyme
Icd (pIcd,KICT

), which catalyzes the lower TCA cycle’s first reaction.

• To establish a high level of cAMP on acetate, the phosphorylated form of the PTS
protein EIIA, EIIA-P, which activates cAMP synthesis via the enzyme Cya, must
be sufficiently high. Absent glucose uptake, the phosphorylation state of the PTS
protein EIIA equilibrates with the PEP/PYR ratio. Therefore, a high enough level
of EIIA-P follows when the PEP/PYR ratio is sufficiently high, which translates
into a sufficiently high PEP level and a sufficiently low PYR level. As glucose
uptake converts PEP to PYR, inactivity of this reaction due to glucose absence
necessarily increases the PEP/PYR ratio. A sufficiently high affinity constant for
PEP of the PEP–consuming enzyme Eno, pEno,KPEP

, and a sufficiently low affinity
constant for PYR of the PYR–consuming enzyme PpsA, pPpsA,KPY R

, can further
contribute to a high PEP/PYR ratio on acetate.

• To establish a low level of FBP on acetate, the affinity constant for FBP of the
FBP–consuming enzyme Fdp, pFdp,KFBP

, must be sufficiently low. A second con-
tribution to a low level of FBP on acetate arises if Fdp’s affinity constant for its
activator PEP, pFdp,KPEP

, is low enough, and this activation is strong enough (the
allosteric constant pFdp,L is high enough) — then, the relatively high level of Fdp’s
activator PEP on acetate (due to an inactive, PEP–consuming PTS reaction and
a sufficiently high affinity constant for PEP of the PEP–consuming enzyme Eno,
pEno,KPEP

) activates Fdp sufficiently so that this enzyme can realize the required
gluconeogenic flux even with a low level of its substrate FBP.

• To establish a low level of PYR on acetate, the affinity constant for PYR of the
PYR–consuming enzyme PpsA, pPpsA,KPY R

, must be sufficiently low.

• To establish a high level of GLX on acetate, the glyoxylate shunt must be induced,
and the affinity constant of the GLX–consuming reaction AceB, pAceB,KGLX

, must
be sufficiently high. To induce the glyoxylate shunt on acetate, the Icd reaction
must be sufficiently inactivated through a high level of Icd-P, which results from
a proper balancing of AceK’s affinity constants, as noted above.
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Note that the proposed distributed sensing mechanism can work as long as the flux-
signalling metabolite levels contain sufficient flux information. Therefore, the above
mentioned parameters may vary as long as they ensure that the flux-signalling metabolite
levels can still indicate flux. Similarly, not–modelled regulations such as those that fulfill
energy, cofactor, pH and proton balances may modulate the system dynamics as long
as these modulations do not compromise the correlation between the flux-signalling
metabolite levels and the flux through these metabolites.

Binding of flux-signalling metabolites to TFs For the operation of the proposed
distributed sensing mechanism, it is essential that the information present in the levels
of the flux-signalling metabolites is propagated into informative TF activities. Therefore,
the distinct levels of the flux-signalling metabolites on glucose and acetate must lead to
distinct levels of the target TFs’ activities. This propagation must be enabled by the
affinity constants of the TFs for their effectors, e.g. pCra,KFBP

, which must therefore lie
in the range of the effector concentrations. The best propagation of distinct metabolite
levels into distinct TF activities is achieved if these affinity constants lie in between the
steady state metabolite levels on glucose and acetate. However, the sensing mechanism
can work as long as the propagation of the flux information from metabolite levels into
TF activities occurs to a sufficient degree, despite possible impacts of not-modelled
regulations as well as uncertainties in the model structure and parameter values.

Coupling of flux-signalling metabolite levels The coupling of flux-signalling metabo-
lites through network topology is explained in the main paper. As long as the metabolite
levels are coupled to a sufficient degree, the transcriptional adjustments of the four TFs
produce a concerted response of the overall system.

Enzymatic regulations contributing to proper network operation During model de-
velopment, we learned that the following enzymatic regulations, although not engaged
in the sensing mechanism, do perform important regulatory adjustments and are thus
important for proper network operation.

• Inhibition of PfkA by PEP and activation of Fdp by PEP The en-
zymes PfkA and Fdp catalyze the same reaction step in opposing directions; during
growth on glucose, the PfkA reaction dominates whereas during growth on acetate,
the Fdp reaction dominates. On the transcriptional level, PfkA production is in-
hibited by Cra and Fdp production is activated by Cra. Hence, during steady state
growth on either glucose or acetate, one of these two enzymes is expressed while the
other is repressed, and therefore the ’correct’ reaction direction is favored. How-
ever, in early stages of the transition from one of the steady states to the other,
the reaction must already operate in the ’correct’ direction although the enzyme
levels have not yet been adjusted and thus still favor the ’wrong’ reaction direc-
tion. To enable the necessary, rapid reversal of carbon flux, PfkA and Fdp must be
antagonistically regulated not only on the slow time scale of transcriptional regu-
lations but also on the fast time scale of enzymatic regulations. Furthermore, the
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antagonistic enzymatic regulation supports the antagonistic transcriptional regu-
lation also during steady state growth, as it further suppresses the ’wrong’ reaction
direction and thereby helps to prevent futile cycling between G6P and FBP.

• Inhibition of Pdh by GLX During growth on glucose, the Pdh reaction is
very active as the primary route to supply the TCA cycle with carbon derived
from glucose. However, during growth on acetate, it is very important that the
Pdh reaction is suppressed in order to prevent the carbon derived from acetate,
which has been converted from acetyl-CoA to pyruvate, to cycle back to acetyl-
CoA, which is acetate’s point of entry into central metabolism. We found that to
successfully adapt from glucose to acetate, it is crucial that already in early stages
of the adaptation, the carbon derived from the TCA cycle enters the gluconeoge-
nesis pathway and does not cycle back to acetyl-CoA. To divert the carbon flux
coming from malate to PEP and not to acetyl-CoA, the acetyl-CoA producing Pdh
reaction is inhibited by GLX, which assumes a high level on acetate but not on
glucose. Intriguingly, this regulation couples the induction of the glyoxylate shunt
to the repression of the Pdh reaction, which makes sense given the functional role
of these two pathways.

• Inhibition of MaeAB by acetyl-CoA and cAMP The levels of MaeAB’s
inhibitors acetyl-CoA and cAMP are high on acetate but low on glucose. These
enzymatic regulations thus seem to oppose the experimentally verified (Fuhrer et
al, 2005; Zhao et al, 2004) usage of the MaeAB reaction, which is used on acetate
but not on glucose. However, our model suggests that this apparent contradiction
only concerns steady state growth, and that these enzymatic regulations play im-
portant roles during the transition from glucose to acetate. As noted above, we
find that for successful adaptations from glucose to acetate, it is crucial that the
cell employs enzymatic regulation to divert its carbon flux to the gluconeogenesis
pathway and prevent it from cycling back to acetyl-CoA via the Pdh reaction.
In addition to regulating the PYR branch point, as noted above, the cell can
also regulate the upstream MAL branch point and divert carbon flux to PEP via
OAA, and not to PEP via PYR from which it may cycle back to acetyl-CoA. The
inhibition of MaeAB by acetyl-CoA, which is the product of the Pdh reaction,
is particularly interesting and functionally very meaningful: If the Pdh reaction
from PYR to acetyl-CoA is active on acetate, then there is too much influx into
the PYR branch point to direct all of the carbon to the gluconeogenesis pathway.
When this occurs, then the level of acetyl-CoA rises and feeds back onto the reg-
ulation of the MAL branch point. Because of the negative feedback regulation
of MaeAB by acetyl-CoA, the MAL branch point is adjusted such that the alter-
native route to PEP via OAA is favored. Note that the activity of the negative
enzymatic feedback regulation of acetyl-CoA onto the MaeAB reaction can be seen
in Figure S5: Flux through MaeAB reaches its steady state rate on acetate faster
than e.g. the PckA and PpsA rates do — once the MaeAB flux has increased to a
certain degree, the enzymatic feedback kicks in, prevents the otherwise occurring
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further increase in the rate, and stabilizes the MaeAB flux at a rate that does
not ’overload’ the PYR branch point. In our opinion, this insight is a formidable
example how kinetic studies can suggest the functions of apparently contradictory
molecular regulations through analyzing transient, dynamic behavior.

• Activation of Acoa2act by PYR As pyruvate levels are high when glucose
is present, this enzymatic regulation ensures that significant acetate uptake occurs
only in the absence of glucose. In the presence of glucose, co–metabolization of
acetate is discouraged.

• Activation of PykF and Ppc by FBP As noted above, PEP is an important
effector for the sensing mechanism. The level of PEP is high on acetate but low on
glucose. On acetate, a high PEP level is ensured by an inactive, PEP–consuming
PTS reaction and by a sufficiently high affinity constant for PEP of the PEP–
consuming enzyme Eno, pEno,KPEP

. On glucose, a low PEP level is ensured by the
PEP–consuming PTS reaction being active, and by the activation of the two PEP–
consuming enzymes PykF and Ppc by FBP (which has a high level on glucose but
not on acetate, see above).

Enzymatic regulations opposing the proposed adaptation mechanism Some enzy-
matic regulations oppose the functioning of the proposed distributed sensing and ad-
justment mechanism. The here proposed mechanism functions if these regulations are
weak enough, which is very likely given that these regulation oppose the experimentally
verified behavior at least in steady state, as noted below. We speculate that these regu-
lations have a function that is not covered by the here presented model (from a modular
viewpoint on cellular regulation, these regulations would belong to other regulatory sub-
systems). These regulations could be eliminated from the model without affecting its
capability for successful adaptations. A list of these regulations follows.

• Inhibition of PckA and PpsA by PEP The high level of the inhibitor PEP
on acetate oppose the experimentally verified (Fuhrer et al, 2005; Zhao et al, 2004)
usage of the PckA and PpsA reactions, which are needed on acetate but not on
glucose.

• Inhibition of Pdh by PYR The high level of PYR on glucose and the
experimentally verified strong usage of the Pdh reaction on glucose (Fuhrer et al,
2005) oppose the inhibition of Pdh by PYR.

• Inhibition of AceA by AKG and PEP The high levels of AKG and PEP
on acetate and the experimentally verified usage of the glyoxylate shunt on acetate
(Zhao et al, 2004) oppose the inhibition of AceA, which catalyzes the first reaction
of the glyoxylate shunt, by AKG and PEP.

Transcriptional regulations Because the model topology has been assembled around
four TFs, the transcriptional adjustment of the model’s enzyme levels is regulated by
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these TFs alone. However, the contributions of each of these four TFs to the successful
adaptation of the overall system to carbon source changes differ markedly.

The TFs Cra and Crp regulate the production of many enzymes in central metabolism
and as such play an essential role in the adaptation. If either one of these two TFs is
removed, the adaptations are not successful. The transcriptional regulations of IclR and
PdhR, however, are much more specific than those of Cra and Crp; thus, their deletion
is easier to compensate.

In the model and in real E. coli cells, the only operon regulated by the TF IclR is
the glyoxylate shunt operon, aceBAK. As this operon is co–regulated by Cra (and Crp,
which, however, regulates the operon in the ’wrong’ direction, for whatever reason), the
in silico cell could compensate a deletion of IclR through the transcriptional regulation
of Cra. Therefore, the in silico cell does not require the TF IclR to adapt between
growth on glucose and acetate. However, the induction of the glyoxylate shunt is in vivo
very likely more selective than in the model: The glyoxylate shunt is required for growth
on acetate but not for growth on other gluconeogenic carbon sources such as succinate,
malate or fumarate. We speculate that the in vivo function of IclR is the selective
induction of the glyxoylate shunt for growth on acetate but not on other gluconeogenic
carbon sources — an aspect not included in the in silico cell, for which acetate is the
sole gluconeogenic carbon source.

In the model and in real E. coli cells, the only enzyme regulated by the TF PdhR
is Pdh. For a successful adaptation from glucose to acetate, a suppression of the Pdh
reaction is crucial. This suppression is to a large extent accomplished through enzymatic
regulations, as discussed above. These enzymatic regulations are supported through the
transcriptional regulation of PdhR. Without PdhR, the enzymatic regulation of Pdh
activity still ensure a successful adaptation, yet the reached steady state on acetate
exhibits a decerased gluconeogenic flux (the acetate steady state exhibits an elevated
level of the enzyme Pdh; consequentially, at the PYR branch point, the flux to acetyl-
CoA is increased and therefore the flux to PEP, the entry point of gluconeogenesis, is
decreased). Therefore, PdhR is not essential for the modelled adaptation but rather
plays a supportive role. This result predicts a lower–than–wild–type growth rate of the
in vivo strain lacking Pdh on acetate.
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