Supplemental material S1: Integrative mixture of experts to combine clinical factors and gene markers

1 Methods

1.1 Parameter estimation via the EM algorithm

To apply the EM algorithm to the ME architecture, we introduce the indicator variables ζ_{hj} , where ζ_{hj} is one if y_j belongs to the h^{th} expert or zero otherwise.

The complete data likelihood for Ψ is given by

$$
\log L_c(\Psi) = \sum_{j=1}^n \sum_{h=1}^H \zeta_{hj} \{ \log \pi_h + \log f_h^G(\mathbf{w}_j; \mathbf{\alpha}_h) + \log f_h^E(\mathbf{y}_j | \mathbf{w}_j; \mathbf{\beta}_h) \} \tag{1}
$$

When we apply the EM algorithm to train the ME architecture, the E-step calculates the Qfunction on the $(k+1)$ th iteration as

$$
Q(\Psi; \Psi^{(k)}) = \mathbb{E}_{\Psi^{(k)}} \{ \log L_c(\Psi) | \mathbf{y}, \mathbf{w} \}
$$

\n
$$
= \sum_{j=1}^n \sum_{h=1}^H \mathbb{E}_{\Psi^{(k)}} (\zeta_{hj} | \mathbf{y}, \mathbf{w}) \{ \log \pi_h + \log f_h^G(\mathbf{w}_j; \alpha_h) + \log f_h^E(\mathbf{y}_j | \mathbf{w}_j; \beta_h) \}.
$$
 (2)

As (2) is linear in ζ_{hj} , the E-step replaces ζ_{hj} in (1) by its current conditional expectation $\tau_{hi}^{(k)}$ hj given y_j, w_j and the current estimate $\Psi^{(k)}$ for Ψ , where

$$
\tau_{hj}^{(k)} = Pr_{\Psi^{(k)}}(\zeta_{hj} = 1 | y_j, \boldsymbol{w}_j) \n= \pi_h^k \frac{f_h^G(\boldsymbol{w}_j; \boldsymbol{\alpha}_h) f_h^E(y_j | \boldsymbol{w}_j; \boldsymbol{\beta}_h)}{\sum_{l=1}^H f_l^G(\boldsymbol{w}_j; \boldsymbol{\alpha}_l) f_l^E(y_j | \boldsymbol{w}_j; \boldsymbol{\beta}_l)}, \qquad h = 1 \dots H.
$$
\n(3)

The Q function can be decomposed into three terms with respect to the parameters π_h , α_h and

 β_h to be estimated in the M-step:

$$
Q_{\pi} = \sum_{j=1}^{n} \sum_{h=1}^{H} \tau_{hj}^{(k)} \log \pi_h,
$$
\n(4)

$$
Q_{\alpha} = \sum_{j=1}^{n} \sum_{h=1}^{H} \tau_{hj}^{(k)} \log f_h^G(\boldsymbol{w}_j; \boldsymbol{\alpha}_h), \qquad (5)
$$

$$
Q_{\beta} = \sum_{j=1}^{n} \sum_{h=1}^{H} \tau_{hj}^{(k)} \log f_{h}^{E}(y_{j} | \boldsymbol{w}_{j}; \beta_{h}). \qquad (6)
$$

By maximizing the decomposed Q functions separately in the M-step, one can obtain the updated estimates of π , α and β .

1.2 ME networks in practice

The initial estimates of μ_h , Σ_h and π_h $(h = 1, ..., H)$ are given by the k-means clustering algorithm on the microarray data, with $k = H$.

The number of experts H can be tuned by computing the index

$$
I_h = \sum_{j=1}^n \zeta_{hj}/n \simeq \sum_{j=1}^n \tau_{hj}/n, \qquad h = 1, \ldots, H.
$$

According to Jacobs *et al.* (1997), the number of experts to choose is the minimum value of H for which the sum of the largest indices exceeds 0.8. In practice, in our binary context, we always found that $H = 2$. In fact, many authors already found that the optimal number of experts can often be set to the number of classes (Ubeyli, 2005; Ng and McLachlan, 2007; Gormley et al., 2009).

1.3 Maximization of the Q-function for the ME model

Common unknown parameters for all models. These parameters to estimate are π_h and β_h in (1), for $h = 1, \ldots, H$.

In the E-step, $\tau_{hj}^{(k)}$ is computed using $f_h^G(\boldsymbol{w}_j; \boldsymbol{\alpha}_h^{(k)})$ $\binom{k}{h}$, which is replaced by (3) using the current estimate $\boldsymbol{\alpha}^{(k)}$.

In the M-step, maximizing Q_{π} gives:

$$
\pi_h^{(k+1)} = \sum_{j=1}^n \tau_{hj}^{(k)}/n.
$$

The weight vector $\boldsymbol{\beta}_h^{(k+1)}$ $h_h^{(k+1)}$ in (1) is updated by solving H nonlinear equations using the MINPACK Fortran routine:

$$
\sum_{j=1}^{n} \tau_{hj}^{(k)} \left(y_j - \frac{\exp(\boldsymbol{\beta}_h^{(k)T} \boldsymbol{w}_j)}{1 + \exp(\boldsymbol{\beta}_h^{(k)T} \boldsymbol{w}_j)} \right) \boldsymbol{w}_j = 0
$$

The parameter $\alpha_h^{(k+1)}$ $\binom{k+1}{h}$ is estimated by maximizing Q_{α} for the different types of model that we use, as described below.

Independence model. The vector of unknown parameters α_h consists of $\lambda_{hil}(i = 1, \ldots, q; l =$ $1, \ldots, n_i - 1$, and the elements of μ_h and Σ_h , $(h = 1, \ldots, H)$.

$$
\lambda_{hil}^{(k+1)} = \frac{\sum_{j=1}^{n} \tau_{hj}^{(k)} \delta(z_{ij}, l)}{\sum_{j=1}^{n} \tau_{hj}^{(k)}},
$$

where $\delta(z_{ij}, l) = 1$ if $z_{ij} = l$ and is zero otherwise, $l = 1, \ldots, n_i$. The elements μ_h and Σ_h are updated as follows:

$$
\mu_h^{(k+1)} = \frac{\sum_{j=1}^n \tau_{hj}^{(k)} \mathbf{x}_j}{\sum_{j=1}^n \tau_{hj}^{(k)}},
$$

$$
\Sigma_h^{(k+1)} = \frac{\sum_{j=1}^n \tau_{hj}^{(k)} (\mathbf{x}_j - \boldsymbol{\mu}_h^{(k)}) (\mathbf{x}_j - \boldsymbol{\mu}_h^{(k)})^T}{\sum_{j=1}^n \tau_{hj}^{(k)}}.
$$

Location model. The vector of unknown parameters α_h consists of $p_{hs}(s = 1, \ldots, S)$ and the elements of μ_h and $\Sigma_h(h=1,\ldots,H)$. These parameters are estimated as follows:

$$
p_{hs}^{(k+1)} = \frac{\sum_{j=1}^{n} \tau_{hj}^{(k)} \delta(j, s)}{\sum_{j=1}^{n} \tau_{hj}^{(k)}},
$$

where $\delta(j, s) = 1$ if $z_{ij} = s$ and is zero otherwise. The elements μ_h and Σ_h are updated as follows:

$$
\mu_h^{(k+1)} = \frac{\sum_{j=1}^n \tau_{hj}^{(k)} \delta(j, s) x_j}{\sum_{j=1}^n \tau_{hj}^{(k)} \delta(j, s)},
$$

$$
\Sigma_h^{(k+1)} = \frac{\sum_{j=1}^n \sum_{s=1}^S \delta(j, s) \tau_{hj}^{(k)} (\boldsymbol{x}_j - \boldsymbol{\mu}_h^{(k)}) (\boldsymbol{x}_j - \boldsymbol{\mu}_h^{(k)})^T}{\sum_{j=1}^n \tau_{hj}^{(k)}}.
$$

Multinomial logit model. The vector of unknown parameters α_h only consists of the variable weight vector v_h , which is estimated via the IRLS algorithm outside the EM algorithm, see Jordan and Jacobs (1994).

References

Gormley, I., Murphy, T., *et al.* (2009). A mixture of experts model for rank data with applications in election studies. *Arxiv preprint arXiv:0901.4203*.

Jacobs, R., Peng, F., and Tanner, M. (1997). A Bayesian approach to model selection in hierarchical mixtures-of-experts architectures. *Neural Networks*, 10(2), 231–241.

Jordan, M. and Jacobs, R. (1994). Hierarchical mixtures of experts and the EM algorithm. *Neural computation*, 6(2), 181–214.

Ng, S. and McLachlan, G. (2007). Extension of mixture-of-experts networks for binary classification of hierarchical data. *Artificial Intelligence in Medicine*, 41(1), 57–67.

Ubeyli, E. (2005). A mixture of experts network structure for breast cancer diagnosis. *Journal of medical systems*, 29(5), 569–579.