
Supplemental material S1: Integrative mixture of experts to

combine clinical factors and gene markers

1 Methods

1.1 Parameter estimation via the EM algorithm

To apply the EM algorithm to the ME architecture, we introduce the indicator variables ζhj,
where ζhj is one if yj belongs to the hth expert or zero otherwise.

The complete data likelihood for Ψ is given by

log Lc(Ψ) =
n
∑

j=1

H
∑

h=1

ζhj{log πh + log fG
h (wj;αh) + log fE

h (yj|wj ;βh)} (1)

When we apply the EM algorithm to train the ME architecture, the E-step calculates the Q-
function on the (k + 1)th iteration as

Q(Ψ;Ψ(k)) = E
Ψ

(k){log Lc(Ψ)|y,w}

=

n
∑

j=1

H
∑

h=1

E
Ψ

(k)(ζhj|y,w){log πh + log fG
h (wj;αh)

+ log fE
h (yj|wj;βh)}. (2)

As (2) is linear in ζhj, the E-step replaces ζhj in (1) by its current conditional expectation τ
(k)
hj

given yj ,wj and the current estimate Ψ(k) for Ψ, where

τ
(k)
hj = Pr

Ψ
(k)(ζhj = 1|yj ,wj)

= πk
h

fG
h (wj ;αh)fE

h (yj |wj ;βh)
∑H

l=1 fG
l (wj;αl)f

E
l (yj|wj;βl)

, h = 1 . . . H. (3)

The Q function can be decomposed into three terms with respect to the parameters πh, αh and
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βh to be estimated in the M-step:

Qπ =

n
∑

j=1

H
∑

h=1

τ
(k)
hj log πh, (4)

Qα =
n
∑

j=1

H
∑

h=1

τ
(k)
hj log fG

h (wj ;αh), (5)

Qβ =

n
∑

j=1

H
∑

h=1

τ
(k)
hj log fE

h (yj |wj ;βh). (6)

By maximizing the decomposed Q functions separately in the M-step, one can obtain the up-
dated estimates of π, α and β.

1.2 ME networks in practice

The initial estimates of µh, Σh and πh (h = 1, . . . ,H) are given by the k-means clustering
algorithm on the microarray data, with k = H.
The number of experts H can be tuned by computing the index

Ih =

n
∑

j=1

ζhj/n ≃

n
∑

j=1

τhj/n, h = 1, . . . ,H.

According to Jacobs et al. (1997), the number of experts to choose is the minimum value of H
for which the sum of the largest indices exceeds 0.8. In practice, in our binary context, we always
found that H = 2. In fact, many authors already found that the optimal number of experts can
often be set to the number of classes (Ubeyli, 2005; Ng and McLachlan, 2007; Gormley et al.,
2009).

1.3 Maximization of the Q-function for the ME model

Common unknown parameters for all models. These parameters to estimate are πh and
βh in (1), for h = 1, . . . ,H.

In the E-step, τ
(k)
hj is computed using fG

h (wj ;α
(k)
h ), which is replaced by (3) using the current

estimate α(k).
In the M-step, maximizing Qπ gives:

π
(k+1)
h =

n
∑

j=1

τ
(k)
hj /n.

The weight vector β
(k+1)
h in (1) is updated by solving H nonlinear equations using the MINPACK

Fortran routine:
n
∑

j=1

τ
(k)
hj

(

yj −
exp(β

(k)T
h wj)

1 + exp(β
(k)T
h wj)

)

wj = 0
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The parameter α
(k+1)
h is estimated by maximizing Qα for the different types of model that we

use, as described below.

Independence model. The vector of unknown parameters αh consists of λhil(i = 1, . . . , q; l =
1, . . . , ni − 1), and the elements of µh and Σh, (h = 1, . . . ,H).

λ
(k+1)
hil =

∑n
j=1 τ

(k)
hj δ(zij , l)

∑n
j=1 τ

(k)
hj

,

where δ(zij , l) = 1 if zij = l and is zero otherwise, l = 1, . . . , ni.
The elements µh and Σh are updated as follows:

µ
(k+1)
h =

∑n
j=1 τ

(k)
hj xj

∑n
j=1 τ

(k)
hj

,

Σ
(k+1)
h =

∑n
j=1 τ

(k)
hj (xj − µ

(k)
h )(xj − µ

(k)
h )T

∑n
j=1 τ

(k)
hj

.

Location model. The vector of unknown parameters αh consists of phs(s = 1, . . . , S) and the
elements of µh and Σh(h = 1, . . . ,H). These parameters are estimated as follows:

p
(k+1)
hs =

∑n
j=1 τ

(k)
hj δ(j, s)

∑n
j=1 τ

(k)
hj

,

where δ(j, s) = 1 if zij = s and is zero otherwise.The elements µh and Σh are updated as follows:

µ
(k+1)
h =

∑n
j=1 τ

(k)
hj δ(j, s)xj

∑n
j=1 τ

(k)
hj δ(j, s)

,

Σ
(k+1)
h =

∑n
j=1

∑S
s=1 δ(j, s)τ

(k)
hj (xj − µ

(k)
h )(xj − µ

(k)
h )T

∑n
j=1 τ

(k)
hj

.

Multinomial logit model. The vector of unknown parameters αh only consists of the vari-
able weight vector vh, which is estimated via the IRLS algorithm outside the EM algorithm, see
Jordan and Jacobs (1994).
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