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 METHODS 

 

General 

The goal of this paper is to better understand the role of synchrony in information 

transfer in the primary visual thalamocortical pathway through analysis of the best 

existing experimental data.  The model allowed us to draw conclusions from the 

experimental data reported in Kara et al (S1) and reach conclusions that were not 

otherwise possible.  We began by developing data analysis tools specific to the Kara et al. 

experimental paradigm of many (200 or more) repeated trials with an identical drifting 

grating pattern stimulus of 250 msec duration.  We confirmed proper data extraction and 

analysis of the Kara data by comparing our calculations of rastergrams, Fano Factor (vs. 

counting window) and PSTH with the values reported in their paper (S1).  In all cases, for 

the triple recordings from retina, LGN and cortex, there was a perfect match. This gave 

confidence that our calculations of reliability, which is weakly related to Fano Factor and 

was not calculated in (S1), would also be valid.   

We next created a multi-compartment model of a reconstructed spiny stellate neuron 

from the cat V1 with separate synaptic inputs (both inhibitory and excitatory) from LGN 

and the cortex. Using LGN input patterns recorded during drifting grating presentations 

in the anesthetized cat (S1) as inputs, we investigated the effects on the reliability of the 

cell of the number and synchrony of LGN afferent synapses in the presence of 

feedforward inhibition and background cortical activity. The input “driver” spike trains 

from LGN included the effects of jitter, noise spikes, and bursting. We finally compared 

these outputs to the actual recorded data from the various experimental studies upon 

which the inputs were based (S1-3). 

 

Spiny stellate cell model 

All simulations were conducted on a Hodgkin-Huxley multi-compartment neuron 

model using the NEURON version 6.0 simulation environment (S4).  We used a digitally 

reconstructed spiny stellate cell of the cat V1 region, layer 4 (S5-7), consisting of 744 

compartments (Fig. 1a), subdivided into 6 dendritic branches. All dendritic branches were 

divided into cylindrical compartments with a maximum length of 50 μm. The dendritic 
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membrane area of spiny neurons was increased to account for spines (adding 0.83 μm2 

per linear μm of dendrite).  

The soma area was 779 μm2, the total dendritic area was 22,491 μm2 and the 

perisomatic area (where GABAergic synapses were located, see below) was 2032 μm2. 

We added an axonal segment of length 250 μm and total area of 95 μm2 for spike 

generation. 

The input resistance was measured to be from 10-15MΩ, which is consistent with in 

vivo recordings of cells in an up state in an anaesthetized cat (S8). 

 

Feedforward inhibitory neuron model 

Furthermore, we simulated a feedforward inhibitory neuron which receives input 

from LGN and synapses onto the stellate cell.  The cell was adapted from one used by 

Bush et al (S9) and is available for download from ModelDB (S10).  The cell consists of 

5 compartments, which include a soma and 4 dendritic branches. Each compartment 

contains an AMPA excitatory synapse driven by the same LGN input as the V1 neuron.  

If the cell spikes, this is transmitted to the SSC cell via a GABA synapse with the same 

conductance strength as a normal intracortical GABAergic synapse (Gmax = 0.05 nS) 

multiplied by a synaptic number multiplier representing the number of synaptic 

connections that this feedforward connection makes.  The default used in all experiments 

is 200 synapses connection strength, except for Fig. 4B, in which a variety of strengths 

are used to determine the effects of inhibitory feedforward connection strength on SSC 

response. 

 

Currents   

All currents were temperature dependent (Q10 = 3), and the temperature was set at 

36oC. The global axial resistance was set at 100 Ωcm and the membrane capacitance was 

set to 1.7 μF/cm2 to account for the presence of spines (S11).  All currents were 

calculated using conventional Hodgkin-Huxley-style kinetics with an integration time 

step of 100 μs.  Currents (I) for most channels are given by: 

 

    I = gaxb(V - E)      (1) 
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where g is the local conductance density, a is an activation variable with x order kinetics, 

b is an optional inactivation variable, V is the local membrane potential, and E is the 

reversal potential for the ionic species.   

The somatic compartment contained delayed rectifier potassium (reversal potential, 

EK = –80 mV) and fast sodium (reversal potential, ENa = 50 mV) currents responsible for 

spike generation (S12).  As in (S5) the soma also contained a high voltage activated 

(HVA) calcium current, ICa (S13), with a calcium pump (S14).  Internal calcium 

concentration was computed using entry via ICa and removal by a first order pump:  

 

  RF τ)/][Ca - ]([Ca-)2/I* 10 (-   
dt

]d[Ca
2i2ca

5i2
∞++

+ =    (2) 

 

where [Ca2+]∞ = 0.1 μM, and τR = 100msec, and F is the faraday constant.   

A slow non-inactivating potassium current was added to allow for spike frequency 

adaptation (S15).  Except for the specified reversal potentials, and specified different 

calcium concentration and decay rates (shown above), the above currents used the same 

parameters, including channel activation and inactivation variables as specified in the 

downloadable model (S5). 

 In addition to the above channels, a slow after hyper polarization (AHP) calcium-

activated potassium current was added to control bursting (S16) (τR = 0.1 , EK = -80 mV, 

gkbar = 0.018 nS).  We also added a slow, non-inactivating somatic M current to allow for 

spike frequency adaptation (S15-S17).  The following equations are solved at each time 

step: 

 

 n∞ = 1/(1+e(-(V+35)/10))         (3) 

 

 τn = 1000 /(3.3*(e((V+35)/40)+e(-(V+35)/20)))     (4) 

 

 n' = (n∞ - n) / τn        (5) 
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where n∞ is the state variable at steady state , V is the membrane potential, and τn is the 

time constant.  (gbar = 0.01 S/cm2). 

The axonal section has fast sodium currents and delayed rectifier currents based on 

Traub et al (S12).  (V = -64mV, gNabar = 0.1 nS, gKbar = 0.05 nS) 

Parameter values for the neuron model and all currents are shown in Table 1. 

Because the precise distribution of dendritic ion channels is still largely unknown for 

these cells (S18-S19), we focused our study on a passive dendritic tree. The distribution 

of leak channels reflected, however, the fact that dendrites were more ‘leaky’ than the 

soma (S11) and as a consequence we distributed these channels in a graded manner 

according to: 

 

 
e1

R - R
  R  (d)R d)/s -(d

endsoma
endm half+

+=      (6)             

 

where dhalf is the distance at which the function is halfway between Rsoma and Rend, and s 

determines the steepness of the decay from Rsoma to Rend with distance d from the soma to 

all dendritic compartments (S11). We used s = 50 μm, Rsoma = 33,333 Ωcm2 and Rend = 

10,000 Ωcm2.  As a control, for some simulations we also added active dendritic currents 

based on the same spiny stellate cell model(S5) (results published separately). 

For the inhibitory interneuron cell, the parameters for the various currents are 

unchanged from the original ModelDB download (S10) and are listed in Table 2. 

 

Active dendrites 

For some simulations, dendrites were made active as in previous work (S5).  

Specifically, three voltage dependent currents and one Ca2+- dependent current were 

added to the passive dendrites using the same Hodgkin – Huxley kinetic formalism 

(reversal potentials, activation variables, reaction rate functions). These included fast Na+ 

channels,   slow non-inactivating K+ channels ( responsible for after-hyperpolarization),  

and high-threshold Ca2+ channels, which were uniformly distributed throughout the 

dendritic arbor. Although there are a wide variety of dendritic currents in neocortical 
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dendrites, this model has been shown to be sufficient to reproduce a number of firing 

features seen in cortical cells (S5).  

 

Synapses 

Of the approximately 5,000-10,000 synapses on layer 4 (L4) spiny stellate cells, only 

about 6% to 15% are excitatory thalamic afferents (S20).  The other inputs consist of  

approximately 80% excitatory and 20% inhibitory synapses (S6).  In our model, we 

simulated 300 LGN excitatory synapses, 4,500 intracortical (from L4 and L6) excitatory 

glutamatergic synapses, and 1,000 inhibitory GABAergic synapses. All excitatory 

synapses were randomly distributed (i.e., separation distances drawn from auniform 

distribution) throughout the dendritic tree and soma, while the inhibitory inputs resided 

perisomatically on dendrites within 200 microns of the soma (uniformly distributed).  For 

the experiments, we introduced structured spike train patterns presynaptically into the 

300 LGN synapses to simulate behavioral spike trains seen in vivo (S3).  The 5,500 other 

synapses were considered to contribute only background noise through excitatory and 

inhibitory currents and they were stimulated by independent random spike trains with 

Poisson distributed arrival times.  

All synapses were implemented explicitly as point processes with a continuously 

integrated kinetic scheme that described an alpha function, allowing for summation 

(S21).  For each simulation, the 300 LGN AMPA synapses (time constant 3 msec, 

reversal potential 0 mV, Gmax = 0.65 nS, (S23)), were activated by a mixture of Poisson 

presynaptic spike times (noise), and precise spike times forming presynaptic patterns 

(signals). The precise rates and timing of these spike times varied for each simulation.  

The background presynaptic firing rate of the intracortical excitatory synapses (time 

constant 3 msec, reversal potential 0 mV) was set to Poisson trains with rate 1 spike/sec 

while the inhibitory GABA synapses (time constant 5  msec, reversal potential -70 mV) 

released faster at about 5 spikes/sec Poisson based on estimates obtained from awake 

animals in vivo (S22).  The conductances of the background excitatory (Gmax = 0.64 nS) 

and inhibitory synapses (Gmax = 0.05 nS) were based on in vivo estimates then adjusted to 

simultaneously achieve a firing rate of about 3 spikes/sec and a membrane potential 

fluctuation of 3 mV in the absence of any LGN stimulation, based on values selected in 
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accordance to in vivo conditions of a cortical cell stimulated by background activity 

alone (S24)    

 

Dynamic stochastic synapses 

One important property of excitatory synapses is that they exhibit short-term 

facilitation and depression which increase and decrease, respectively, the probability of 

neurotransmitter  release according to the history of preceding spikes over the last several 

hundred milliseconds (S25).  In computational models, these dynamics are traditionally 

incorporated phenomenologically (S26-S27) so as to vary the level of facilitation and 

depression based on the measured average responses of a large group of synapses.  

However, these models do not capture the stochasticity of individual synapses that only 

initially release vesicles on the order of 20% of the time on average (S28).  This 

stochasticity of individual synapses is an important source of unreliability, which we 

included in the model.  

The dynamic stochastic synapse we used was based on previous experiments and 

theoretical formulation using minimal stimulation (S29-S30).  The probability of release 

is characterized by the equation 

 

Pr(t) = 1 – e-F(t)D(t)                               (7) 

 

where F(t) and D(t) represent facilitation and depression levels, respectively, and 

 

∑
<

−+=
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i
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describes an exponentially decaying accumulation of calcium with each presynaptic spike 

at time ti (F0, α and τ are constants), and 
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where S is the dynamically updated set of spike times that yielded release (D0, β, τ’ are 

constants).  For all simulations, we used F0= 0.003, D0= 60 (yielding an initial probability 
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of release of 0.2), the magnitude of depression was set to α= 0.02, and the magnitude of 

facilitation was set to β = 50. The time constants were set to τ = 94 msec and τ’ = 380 

msec. With these values, the response to regular trains of action potentials injected 

simultaneously to 100 synapses distributed randomly consisted of EPSP sequences that 

mimicked in amplitude and dynamics those obtained in vitro and in phenomenological 

models (S26). 

At each excitatory synapse, when a presynaptic spike is received at time t, the 

probability of release, Pr(t), is calculated based on the current spike history S.  A random 

number from a uniform distribution is then drawn and if the random number is larger 

than Pr(t), a postsynaptic potential is generated, and S is updated.  Note that it is not 

necessary to update Pr(t) for each synapse at every simulation time increment – only 

when a presynaptic spike occurs at that synapse. 

The dynamic synapse model was used for all excitatory synapses, both from LGN and 

from intracortical presynaptic neurons.  For inhibitory synapses, release was reliable and 

occurred with the arrival of each spike in the pre-synaptic train.  Although there is some 

evidence that thalamocortical synapses have a high and largely invariant probability of 

release (S31-S32), other studies indicate the possibility of weak synapses (S33).  Thus, 

for the purpose of this experiment, we took into account the worst case scenario by 

treating intracortical and thalamocortical synapses as equally weak and probabilistic.  

However, some experiments were conducted in which probabilistic neurotransmitter 

release was removed from the LGN synapses. 

 

Simulation Paradigm 

The time step in the NEURON simulations was set at dt = 0.1 msec and the total 

duration of a trial varied from 250 milliseconds to 10 seconds. The first 50 msec of each 

simulation were considered to be numerical transients, and were discarded from all 

analyses. For a set of trials the LGN inputs consisted of a pattern of ‘event’ spikes which 

were received simultaneously (but with some random jitter from synapse to synapse) by 

some designated subset of the synapses. These event spike trains were from actual 

recordings of LGN neurons made by Kara et al (S1) in anesthetized cats stimulated by 

drifting gratings.  The number of LGN synapses receiving these event spike trains was 
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designated the synchrony magnitude.  For example, a synchrony magnitude of 100 

synapses means that 100 synapses receive a particular set of events simultaneously. 

Additional Poisson distributed noise spikes were added to all of the LGN synapses.  To 

determine reliability, different sets of presynaptic spike trains from the LGN recordings 

were then input to the LGN synapses for each trial, (unlike the “frozen noise” approach 

(S34), which utilizes identical inputs across trials).  Thus, although the presynaptic spike 

trains were similar, they were not identical across trials - the added input variability 

corresponded to additional variability to be expected at the transformation from the retina 

to the LGN, dynamic stochastic synapses and random background noise fluctuations. 

 Recordings from 4 cells were used, each having at least 100-200 trials/cycles. All 

of these data were used in Figure 3 in producing firing rate and reliability comparisons.  

Only 30 distinct trials were used for each data point in Fig 2. 

 

Calculation of Fano Factor 

Our calculations of Fano Factor used the same technique of overlapping time 

counting windows described under Methods in (S1).  Fano Factor is defined as: 

W

WF
μ

σ 2

=           (10) 

where  is the variance and μW is the mean of the firing rate (total spike count) in time 

window W.  In most simulations, W = 250 msec.  This was selected after performing a 

series of tuning experiments to determine the affect of the size of W to find the minimal 

Fano factor (Fig. S2).  Counting windows were varied, within a trial, from 1 msec to 250 

msec (the length of the trial). This analysis reveals the effects of spike count variability 

over different periods in the trial, averaged over all trials. Traditionally, the counting 

window with minimum Fano Factor is quoted as the correct value. Fig. S2 compares 

Fano Factor counting window analysis of the original Kara data for a V1 cortical cell 

with that of our spiny stellate model cell driven by the Kara et al spike trains recorded in 

the LGN (S1).  It can be seen that the minimum Fano Factor occurs in the range of 50 

msec in both cases.  This implies that there is a strong statistical similarity between our 

model stellate cell, which integrates all that is commonly known about cell physiology in 

W
2σ
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the thalamocortical pathway, and the recorded cortical cells in cat when presented with 

identical spike trains. 

 Using the same output data from the spiny stellate cell that was used for Fig. 2, 

the Fano Factor was computed for each synchrony magnitude using a 50 msec counting 

window. The result, plotted in Fig. S2C, shows a distinct drop in spike count variability 

by synchrony magnitude 20 synapses indicating a measurable information transfer.  The 

Fano Factor remains low through 80 synapses and rises thereafter, possibly due to 

shunting inhibition and/or to synaptic depression. This plot also indicates an inverse 

correlation between Fano Factor and our reliability measure as seen by comparing Fig. 

S2C and Fig. 2A. 

 

Calculation of reliability 

Reliability was computed using a synchrony-based measure (S35) applied to the spike 

train output of the model neuron. Briefly, the spike trains obtained from N repeated 

presentations of the same stimulus were each convolved with a Gaussian filter of width 

2σ (σ is the width of the Gaussian kernel in msec) with is  denoting the ith smoothed train. 

After convolving all N trials, the inner product is taken between all pairs of trials (each 

trial normalized by its norm), the inner products are summed, and the sum is divided by 

the number of pairs to yield a reliability measure on the interval (0,1). Formally, the 

reliability R is defined as 

 

∑ ∑
= += ⋅

⋅

−
=

N

i
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ss
ss
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      (11) 

 

We used σ = 3 msec, N = 30 trials based on the observation that reliable events in the 

experimental data for V1 cells occur with a jitter of approximately 3 msec (S36).  The 

choice of 30 trials was found to provide consistently good estimates of R without running 

excessively many trials (data not shown). 

This reliability metric had a bias for higher firing rates because an increase in overall 

spike density inevitably caused more overlap with input spikes and thus increased the 

measured spike timing reliability (STR) level. This effect was quantified in a control test 
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measuring STR with purely random (Poisson) input spike trains on the LGN synapses at 

differing (0 – 20 spikes per second) arrival rates (results not shown).  In Fig. 3-6, to 

facilitate comparison of control factors, we compensated by subtracting the reliability due 

to noise, which can be found when pure noise (and no signal events) are present in the 

synaptic input.  Thus, these graphs all have STR curves which start at the origin. 

In earlier studies (S34), the terms reliability and precision were related but separately 

measured quantities.  The metric used in our study, which we simply refer to as reliability, 

actually incorporates both reliability as well as precision in the earlier senses.   

 Both reliability and precision of spiking are needed for a neuron to successfully 

decode information contained in the patterns of input spikes.  Note that the output of the 

neuron need not reproduce the input pattern, but may respond with a different pattern of 

spikes.  Our measure of reliability picks up these output spike patterns irrespective of the 

input patterns. 

 

Calculation of Reliability Per Spike (RPS) 

The reliability, R, of a set of 30 trials was computed (S35), and was divided by the 

ratio of the average firing rate, FRave, over the maximum observed firing rate, FRmax of 

the entire series of experiments (from 0 – 300 synchronous synapses). 

 

maxave / FRFR
RRPS =      (12) 

 

Calculation of Reliability Per Synchrony Magnitude (RPSM) 

The reliability, R, of a set of 30 trials was computed (S35), and was divided by the 

synchrony magnitude (SM) that was used for that set of trials. 

SM
RRPSM =      (13) 
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Figure Captions 

 

Fig. S1. The average membrane potential response increased nonlinearly with the number 

of synchronous inputs from (A) 5 synchronous synapses, (B) 10 synchronous synapses 

and (C) 20 synchronous synapse.   The spike times on each trial were selected from the 

set of recorded LGN inputs from Kara et al. (S1).  (A-C) Top panels:  Rastergrams of 

synaptic inputs. Middle panels:  Superimposed somatic voltage responses.  Bottom 

panels:   Average relative membrane potential responses.  Voltage traces for each 

synchrony magnitude were subtracted from the membrane potential trace of the zero 

synchrony magnitude case and averaged.  (D) Average maximum EPSP amplitude as a 

function of synchrony magnitude.   (E) The RPSM (reliability per synchrony magnitude 

curve).  

Fig. S2. Illustration of experiments using “grouped” synapses in which 5 synapses per 

group each exhibit the same spike times, thus representing input from a single cell.  (A) 5 

synchronous synapses, using similar in vivo recorded spike times.  (B) 10 synchronous 

synapses showing 2 groups of 5 synchronous synapses each and (C) 20 synchronous 

synapses, showing 4 groups of 5 synchronous synapses each.   (A-C) Top panels:  

Rastergrams of synaptic inputs. Middle panels:  Superimposed somatic voltage responses.  

Bottom panels:  Average relative membrane potential responses.  Voltage traces for each 

synchrony magnitude were subtracted from the membrane potential trace of the zero 

synchrony magnitude case and averaged.  (D) Average maximum EPSP amplitude as a 

function of synchrony magnitude.  (E) The RPSM (reliability per synchrony magnitude 

curve).   

 

Fig. S3. Balance of inhibitory and excitatory background input shifts the reliability curve.  

The reliability, firing rate and reliability per spike (RPS) as a function of synchrony 

magnitude were measured while the rates of the random (Poisson) presynaptic spike 

trains for the 4500 excitatory (Glutamate) and 1000 inhibitory (GABA) intracortical 

synapses were varied. Excitatory synapses were stochastic with short term plasticity (see 

methods).  Input was based on Kara experimental data (S1).  (A) The background 

synaptic drive was varied while the ratio of excitatory to inhibitory input rates remained 
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constant at 1:5 (β=5).  The slope at the inflection point increased with decreasing 

background drive.  Reliability was high and each output spike was significant when total 

drive is low (Glu 0.5 spikes/sec, GABA 2.5 spikes/sec)   Higher total drive significantly 

increased firing rate and reduced asymptotic reliability.  (B) Varying the ratio of 

excitatory to inhibitory rates by changing the excitatory (Glu) input showed a similar 

steepening of the slope of the reliability curve around an inflection point as the Glu rate is 

decreased (β increased).  (C) The slope also steepened when excitatory spike rates were 

fixed and the inhibitory GABA spike rates varied from 2.5 to 10 spikes/sec. At high 

levels of inhibition the inflection point shifted to right because significantly higher LGN 

synchrony was needed to overcome the hyperpolarization.  

 

Fig. S4. Minima of Fano Factor (FF) for data and models for data shown in Fig. 2 for a 

range of counting window sizes.  At the shortest counting window (1 msec), the 

minimum FF is close to unity.  With larger counting windows (5 to 250 msec), the 

minimum FF progressively decreased.  (A) Minimum FF from 800 trials of in vivo 

recordings (S1).  (B) Minimum FF from 800 trials of modeled data.  The curve from the 

model approximately matched the shape from the experimental data. 

(C) Fano Factor is inversely related to synchrony. The same output spike data files which 

varied synchrony magnitude, and were used to plot reliability and firing rate in Fig. 2, 

were used to calculate Fano Factor.  (The counting window was set to 50 msec).  Low 

spike count variability (low Fano Factor) occurs in the range of 20-80 synchronous 

synapses.  

 

 

Figure S5. Gmax affects the output reliability and firing rate approximately linearly.  

Gmax of LGN input (across 300 synapses) was varied between 0 and 3 nS.  (A) 

Reliability and (B) firing rate did not exhibit the nonlinear effects seen in Figure 2.  

These tests were conducted in the absence of input synchrony.  
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Table 1. Table of parameter values used for the V1 Spiny Stellate Cell (SSC), which has 

3 major groupings - dendrites, axon, and soma.  Parameters that applied to all groupings 

are listed in the general section.  Other added mechanisms are shown within each group. 

 

Table 2. Table of parameters used for the inhibitory neurons.  The basket cell is based on 

G1.34 of V1 project from Bush et al (S9).  All parameters with regard to the basket cell 

remain unchanged from the original ModelDB download (S10). 
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TABLE 1 – Parameter list for Spiny Stellate Cell (SSC) 
 
A. 

All SECTIONS 
V_init -60 mV Initial starting voltage 
dt 0.1 msec Simulation time step 
tstop 250 msec Simulation time duration 
T 36 C Simulation temperature 
Ra 70 Ωcm Global Axial Resistance (S11) 
EK -80 mV Potassium Reversal Potential 
ENa 50 mV Sodium Reversal Potential 
 

Inserted Mechanisms 
Leak Currents  
Eleak -85 mV Reversal potential of leak current 
 
B. 

DENDRITES 
gleak 27*10-5 S/cm2 Leak current conductance (varies according to distance from 

soma, see supporting materials text) 
Cm 1.7 mF/cm2 Membrane capacitance, increased to account for spines (S11) 
Ra 100 Ωcm Axial resistance 
 
C. 

AXON 
Cm 1  mF/cm2 Membrane capacitance 
gleak 1*10-5 S/cm2 Leak conductance 
Ra 10 Ωcm Axial resistance 
 

Inserted Mechanisms 
Hodgkin-Huxley Na/K channel  
Vthresh -64 mV Threshold voltage (S37) 
GNabar 0.1 S/cm2 Sodium conductance 
GKbar 0.05 S/cm2 Potassium conductance 
 
D. 

SOMA 
Cm 1.3 mF/ cm2 Membrane capacitance 
gleak   3*10-5 S/cm2 Potassium leak channel conductance (S11) 
Ra 1 Ωcm Axial resistance 
Rm 33,333 Ωcm2 Specific membrane resistance (S11) 
 
Hodgkin-Huxley Na/K channel  
Vthresh  -68 mV Threshold voltage 
gnabar  0.3 S/cm2 Sodium conductance 
gkbar 0.18 S/cm2 Potassium conductance 
 

Inserted Mechanisms 
Im current 
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gMbar 0.01 S/cm2 M-current conductance 
 
IAHP channel Slow Ca-dependent potassium current to control bursting 
[Ca]i 0.025 mM Initial calcium concentration 
β  0.03 msec-1 Backward rate constant 
τmin 0.1 msec Minimal value of the time constant 
gkbar  0.018 S/cm2 Potassium conductance 
 
ICa channel      
gbar 0.2 S/cm2 Calcium channel conductance 
 
Ca decay pump   
[Ca]∞  0.005 mM Steady state calcium ion concentration  
[Ca]i 0.04 mM  Initial calcium ion concentration 
kd 0.02 mM Equilibrium calcium value 
kt 1*10-4 mM/msec Time constant of the pump 
depth 1 μM  Depth of shell 
taur 1*1010 msec Time constant of first-order decay   
decay 100 msec Decay time constant 
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TABLE 2- Parameter list for fast-spiking inhibitory interneuron 
 

SOMA 
Cm  2.2125 mF/cm2 Membrane capacitance 
gleak  1.475*10-4 S/cm2 Leak conductance 
Eleak  -61 mV Reversal potential of leak channel 
Ra 200 Ωcm Axial resistance 
 
Hodgkin-Huxley Na/K channel  
Vthresh  -68 mV Threshold voltage 
gnabar  0.3 S/cm2 Sodium conductance 
gkbar 0.18 S/cm2 Potassium conductance 
 

Inserted Mechanisms 
Na channel Sodium channel 
gmax 0.08  S/cm2 Maximal conductance 
 
K channel Potassium channel 
gmax 0.09 S/cm2 Maximal conductance 
 
Ca channel  Borg-Graham channel (S38) 
gmax 0.0005 S/cm2 Maximal conductance 
 
Calcium removal pump   
decay  100 msec Decay time constant 
 
Kca channel    
gmax 0.0025 S/cm2 Maximal conductance 
 

DENDRITES 
Leak current  
gleak  1.475*10-4 S/cm2 Leak current conductance 
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