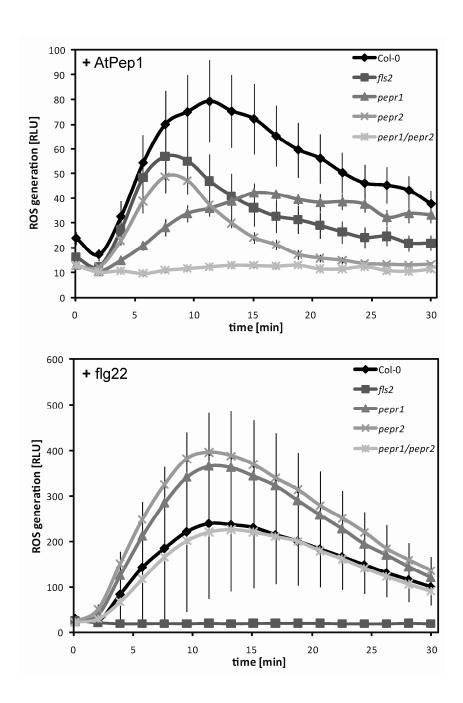
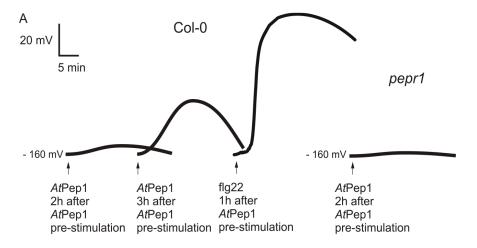
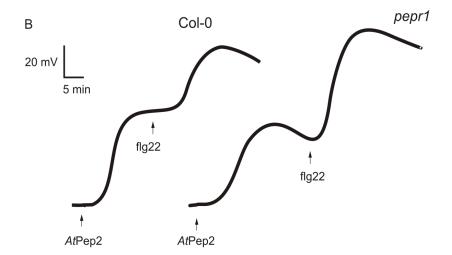
Supplemental data:

Supplemental table


		Amplitude ± SD
Treatment:	n	[10 ⁻³ L/L _{max}]
20 nM flg22	6	1.2 ± 0.5
10 nM flg22	8	0.5 ± 0.2
20 nM <i>At</i> Pep1	5	0.2 ± 0.1
10 nM flg22 + 10nM <i>At</i> Pep1	8	0.4 ± 0.2
	9	0.4 ± 0.2
10 nM flg22 + 10nM <i>At</i> Pep2		
10 nM flg 22 + 10 nM At Pep 3	9	0.4 ± 0.2

n – number of plants examined


Table S1. Transient rise in calcium concentrations in response to MAMPs and DAMPs.


Arabidopsis thaliana (Col-0) expressing aequorin was pre-incubated with coelenterazine and then subjected to treatments by various MAMPs and DAMPs. The mean amplitudes of relative luminescence were determined as a measure of the maximal rise of cytoplasmic Ca²⁺ levels. The relative luminescence was determined from the ratio of the actual luminescence per second and the total luminescence emitted from "discharged" aequorin following treatment of tissue with a 1 M CaCl₂ in 10% ethanol.

Supplemental figures

<u>Fig. S1.</u> Kinetics of ROS production in response to AtPep1 (A) or flg22 (B). Traces represents an individual experiment while the superimposed error bars correspond to SE $(n \ge 6)$.

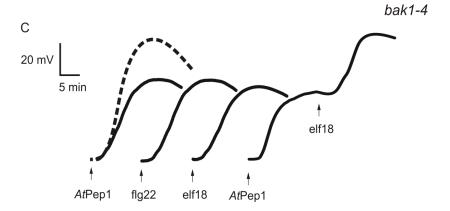


Fig. S2. MAMP- and DAMP-associated membrane responses show independent desensitization (A) and additivity (B) irrespective of sharing a common receptor partner (C). While after 2 h a second application of AtPep1 on fully repolarized cells still fails to evoke a second depolarisation by AtPep1, 3 h refraction is sufficient for regaining of ca 50% of responsiveness. Such behaviour is present in both pepr1 and WT plants. Additive character of MAMP- and DAMP-triggered depolarizations preserves in pepr1 and bak1-4 mutants. Interestingly, all depolarizations are severely compromised in amplitudes in bak1-4 plants and lose characteristic differences in amplitudes (cf. Table 2). For better comparison a WT-like AtPep1-induced membrane potential change is superimposed on a corresponding draft (dashed line).