Supporting Information

for

Vibrational Analysis of the Model Complex (μ-edt)[Fe(CO)₃]₂ and Comparison to Iron-only Hydrogenase: The Activation Scale of Hydrogenase Model Systems

Mary Grace I. Galinato, C. Matthew Whaley, and Nicolai Lehnert

	Force constant ^b		
Coordinate ^{<i>a</i>}	Redong	QCC-NCA	
Fe(1)-S(3)	0.591586	0.521586	
Fe(2)-S(3)	0.592404	0.522404	
Fe(1)-S(4)	0.591597	0.521597	
Fe(1)-S(4)	0.592437	0.522437	
S(3)-C(20)	1.85367	1.73367	
S(4)-C(17)	1.85376	1.73376	
C(8)-Fe(1)-C(9)	0.459841	0.325841	
C(6)-Fe(2)-C(7)	0.459954	0.325954	
C(9)-Fe(1)-C(10)	0.266437	0.125437	
C(8)-Fe(1)-C(10)	0.266475	0.125475	
C(5)-Fe(2)-C(7)	0.267512	0.126512	
C(5)-Fe(2)-C(6)	0.267380	0.126380	
Fe(1)-S(3)-C(20)	0.370261	0.380261	
Fe(1)-S(4)-C(17)	0.370314	0.380314	
Fe(2)-S(3)-C(20)	0.366590	0.376590	
Fe(2)-S(3)-C(17)	0.366526	0.376526	
S(3)-C(20)-C(17)	0.461224	0.671224	
S(4)-C(17)-C(20)	0.461233	0.671233	
C(9)-Fe(1)-S(3)	0.283571	0.305571	
C(8)-Fe(1)-S(4)	0.283577	0.305577	
C(7)-Fe(2)-S(3)	0.292616	0.314616	
C(6)-Fe(2)-S(4)	0.292680	0.314680	

Table S1. Manually adjusted force constants in the QCC-NCA simulation of $(\mu$ -edt)[Fe(CO)₃]₂, starting from the B3LYP/TZVP-calculated force field.

^aAtom numbers are shown in Figure 2. ^bThe units for the force constants of stretching and linear bending are mdyn/Å and mdyn·Å, respectively.

Table S2. Cartesian coordinates [Å] for the DFT optimized geometry of $(\mu$ -edt)[Fe(CO)₃]₂ using B3LYP/TZVP.

Fe	1.26230900	-0.17491200	0.00002500
Fe	-1.26245100	-0.17467900	-0.00012900
S	-0.00003900	1.03969700	1.48548600
S	0.00010800	1.03958800	-1.48565700
С	-2.80750500	0.75012800	0.00002200
С	-1.63198200	-1.36820500	-1.30677200
С	-1.63183500	-1.36799700	1.30673900
С	1.63180600	-1.36842900	-1.30664200
С	1.63192400	-1.36815900	1.30690800
С	2.80729100	0.74999000	-0.00015600
0	-3.78776397	1.33687148	0.00011780
0	-1.86526950	-2.12168629	-2.13166484
0	-1.86503010	-2.12134829	2.13177532
0	1.86507147	-2.12190279	-2.13154800
0	1.86526351	-2.12146086	2.13194875
0	3.78751628	1.33680093	-0.00027084
С	0.00007600	2.74545500	-0.76290700
Н	0.88120200	3.24536000	-1.16400400
Н	-0.88156100	3.24496300	-1.16336400
С	0.00061400	2.74552800	0.76262300
Н	-0.88033400	3.24577900	1.16367600
Н	0.88243300	3.24472800	1.16306100
Х	-2.86302270	0.65753816	-0.99413337
Х	-2.29692774	1.60315542	-0.10793672
Х	-1.40431266	-2.11836326	-0.68594251
Х	-0.67993866	-1.33055461	-1.61040984
Х	-1.52894460	-0.64810851	1.99316025
Х	-0.65835340	-1.58262495	1.38591236
Х	1.96847888	-2.01433028	-0.62146837
Х	2.55097906	-0.98505552	-1.39689536
Х	2.32601429	-0.74967691	1.67530801
Х	2.32217019	-1.79458806	0.72234110
Х	2.29406360	1.60730715	0.03990572
Х	2.78662739	0.78431152	-0.99935320

Note: X represents anchor atoms for the definition of linear bending internal coordinates.

Table S3. Cartesian coordinates [Å] for the DFT optimized geometry of $(\mu$ -edt)[Fe(CO)₃]₂ using BP86/TZVP.

Fe	1.26985700	-0.16670900	-0.00060400
Fe	-1.26986400	-0.16668600	0.00059500
S	0.00071000	1.01812800	1.47530200
S	-0.00069600	1.01811100	-1.47532400
С	-2.80156600	0.74834300	0.00063600
С	-1.65972100	-1.34970200	-1.28367400
С	-1.65866900	-1.34965500	1.28528500
С	1.65864300	-1.34972200	-1.28526100
C	1.65973200	-1.34967700	1.28370400
С	2.80155300	0.74832800	-0.00066900
0	-3.79896800	1.33931400	-0.00054300
0	-1.92865200	-2.11671000	-2.10751500
0	-1.92692400	-2.11664000	2.10936000
0	1.92689500	-2.11673400	-2.10931200
0	1.92868800	-2.11664200	2.10757800
0	3.79892800	1.33934500	0.00052900
С	-0.00048500	2.73927200	-0.76176500
Н	0.88985400	3.23369700	-1.17446900
Н	-0.89155200	3.23337800	-1.17327400
С	0.00053200	2.73928100	0.76172500
Н	-0.88979900	3.23372500	1.17442400
Н	0.89160800	3.23337600	1.17322800

	Experimental [cm ⁻¹]		Calculated (DFT) $[cm^{-1}]^{c}$	
Mode	IR a (12 CO/ 13 CO)	rR^{b} (¹² CO/ ¹³ CO)	B3LYP/TZVP	BP86/TZVP
v(C=O)	2078(2077)/2030	2070 / 2023	2153	2063
v(C=O)	2038(2037)/1991	2005 / 1959	2105	2028
v(C=O)	2008(1998)/1962	1979 / 1934	2095	2002
v(C=O)	1995/1950	1968 / 1924	2083	1988
v(C=O)	not observed	1964 / 1919	2076	1985
v(C=O)	1985/1940	1961 / 1917	2072	1979
$v(Fe-CO) + \delta(Fe-C=O)$		630 / 615	636	637
$v(Fe-CO) + \delta(Fe-C=O)$		592 / 579	601	609
$v(Fe-CO) + \delta(Fe-C=O)$		572 / 562	578	588
$v(Fe-CO) + \delta(Fe-C=O)$		565 / 556	571	584
δ(Fe-C=O)		528 / 519	526	521
$v(Fe-CO) + \delta(Fe-C=O)$		503 / 495	507	525
$v(Fe-CO) + \delta(Fe-C=O)$		494 / 485	496	500
$v(Fe-CO) + \delta(Fe-C=O)$		483 / 474	481	501
$v(Fe-CO) + \delta(Fe-C=O)$		470 / 462	471	496
$v(Fe-CO) + \delta(Fe-C=O)$		463 / 452	454	464
$v(Fe-CO) + \delta(Fe-C=O)$		456 / 444	448	453
$v(Fe-CO) + \delta(Fe-C=O)$		454 / 442	446	446
$v(Fe-CO) + \delta(Fe-C=O)$		447 / 435	440	445
δ(Fe-C=O)		419 / 406	416	413
δ(Fe-C=O)		416 / 403	410	407

Table S4. Comparison of experimental and calculated (B3LYP and BP86 with basis set TZVP) vibrational frequencies of $(\mu$ -edt)[Fe(CO)₃]₂, focusing on the ν (C=O) and ν (Fe-CO)/ δ (Fe-C=O) energy regions.

^{*a*} Vibrational IR energies were obtained in hexane and acetonitrile (in parenthesis). ^{*b*} From resonance Raman measurements on a saturated solution in acetonitrile. ^{*c*} DFT calculations.

Figure S1. Diffuse reflectance Fourier transform infrared spectra of solid (μ -edt)[Fe(CO)₃]₂ and (μ -edt)[Fe(¹³CO)₃]₂.

Figure S2. Comparison of experimental (in hexane, solid line) and B3LYP/TZVP calculated (column bar) IR spectra of $(\mu$ -edt)[Fe(CO)₃]₂.

Figure S3. Comparison of experimental (in hexane, solid line) and BP86/TZVP calculated (column bar) IR spectra of $(\mu$ -edt)[Fe(CO)₃]₂.

Figure S4. Overlay of the BP86/TZVP calculated (column bars) and experimental (solid lines) Raman spectra of $(\mu$ -edt)[Fe(CO)₃]₂ in acetonitrile in the A) ν (Fe-CO)/ δ (Fe-C=O) and B) ν (C=O) regions. The DFT-calculated modes are labeled according to the corresponding experimental modes (refer to Figure 5 and Table S4).

