Interpretation of MS³ and MS⁴ spectra acquired during top down analysis of CLR chains.

The nomenclature for fragment ions defined by Macek et al in [Mol Cell Proteomics. 5(5):949-958] was adopted.

We thus marked as \hat{y} , the fragment ions containing the C-terminal residue of the btype fragment selected for MS³ or MS⁴.

We marked as \hat{b} , the fragment ions containing the N-terminal residue of the y-type fragment selected for MS³ or MS⁴.

We chose to label as 'y' the fragments whose mass matched the theoretical m/z of y-type fragment ions, even though they came from MS³ or MS⁴ fragmentation of b ions.

ITMS³ of the b₁₃⁺ ion at m/z 1250.6014 (1+), produced by FTMS² analysis of m/z 1102.41 (10+) or 1104.02 (10+) (CLR-B) Q(pyro)LSCTGP*PAIP*GI

ITMS³ of the y₉²⁺ ion at m/z 535.3027 (2+), produced by FTMS² analysis of m/z 1102.41 (10+) or 1104.02 (10+) (CLR-B, 1-97) YKATQKIAF

ITMS³ of the y_{20}^{2+} ion at m/z 1103.5312 (2+), produced by FTMS² analysis of m/z 1256.71 (8+) (CLR-C, 1-90) (PGP)*MGIP*GEPGEEGRYKQKF

FKQKYRGEE G - P - EGP* -GP **FKQKYR GEEGP** -EGP*IGMPGP* **RYKQKF** P*GE P*GP G PGEE G **Y**14²⁺ 819.33 100 90 80 70 Relative Abundance 07 09 09 **Y**16²⁺ 904.33 30 681.25 18 669.91 **%**6 869.33 **b**9 868.17 20 569.17 2+ **Y**₁₇²⁺ ĥ b' 1018.92 b 541.17 10 456.25 337.66 970.02 621.33 398.92 1216.25 1338.67 268.17 1280.50 1533.25 1640.83 0 200 400 600 800 1000 1200 1400 1600 1800 m/z

ITMS³ of the y₂₀³⁺ ion at m/z 736.0229 (3+), produced by FTMS² analysis of m/z 1256.71 (8+) (CLR-C, 1-90)

P*GPMGIP*GEPGEEGRYKQKF

ITMS³ of the y_{14}^{2+} ion at m/z 819.3975 (2+), produced by FTMS² analysis of m/z 1256.71 (8+) (CLR-C, 1-90) P*GEPGEEGRYKQKF

P*GPMGIP*GEP*GEEGRYKQKF

P*GPMGIP*GEPGEEGRYKQKFQSVF

ITMS⁴ of the fragment at m/z 399.17 (1+), produced by ITMS³ analysis of m/z 889.7638 (3+) (CLR-C, 1-94)

This ion corresponds to fragment b_4 produced from sequence P*GPMGIP*GEP*GEEGRYKQKFQSVF. P*GPM

ITMS³ of the y₁₄²⁺ ion at m/z 827.3938 (2+), produced by FTMS² analysis of m/z 1258.71 (8+) (CLR-C, 1-90)

P*GEP*GEEGRYKQK

ITMS³ of the y₁₈²⁺ ion at m/z 1050.0091 (2+), produced by FTMS² analysis of m/z 1314.36 (8+) (CLR-C, 1-94)

P*GEPGEEGRYKQKFQSVF

ITMS³ of the y₁₈²⁺ ion at m/z 1058.0063 (2+), produced by FTMS² analysis of m/z 1316.38 (8+) (CLR-C, 1-94) P*GEP*GEEGRYKQKFQSVF

P*GPMGIP*GEP*GEEGRYKQKFQSVF

ITMS⁴ of m/z 569.33 (1+), produced by ITMS³ analysis of m/z 895.0957 (3+) (CLR-C, 1-94) This ion corresponds to fragment \hat{b}_6 produced from sequence P*GPMGIP*GEP*GEEGRYKQKFQSVF

P*GPMGI