Supporting Information

Enantioselective, Organocatalytic Reduction of Ketones using Bifunctional Thiourea-Amine Catalysts

De Run Li, Anyu He and J. R. Falck*

Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center Dallas, Texas 75390 USA E-mail: j.falck@utsouthwestern.edu

I. General information	2
II. Preparation of catalysts	3
III. Reaction parameter optimization	6
IV. General reduction procedure and examples	10
V. Chiral HPLC analyses	18
VI. NMR spectra	36

I. General information

All reactions were maintained under an argon atmosphere. Anhydrous solvents were freshly distilled from sodium benzophenone ketyl, except for CH_2Cl_2 , which was distilled from CaH_2 . Extracts were dried over anhydrous Na_2SO_4 and then filtered prior to removal of all volatiles under reduced pressure. Unless otherwise noted, commercially available materials were used without further purification. Flash chromatography (FC) was performed using silica gel 60 (240–400 mesh). Thin layer chromatography was performed using commercial pre-coated glass plates (silica gel 60 PF254, 0.25 mm).

Nuclear magnetic resonance (NMR) spectra were recorded at operating frequencies of 300/400 MHz (¹H) or 75/100 MHz (¹³C). Chemical shifts (δ) are given in ppm relative to residual solvent (usually chloroform δ = 7.26 for ¹H NMR or δ = 77.23 for proton decoupled ¹³C NMR) and coupling constants (*J*) in Hz. Multiplicities are tabulated as s for singlet, d for doublet, t for triplet, q for quadruplet, and m for multiplet, whereby the prefix app is applied in cases where the true multiplicity is unresolved and br when the signal in question is broadened.

Ketone **29** was prepared by condensing (acetylmethylene)triphenylphosphorane with hydrocinnamaldehyde at 80 °C in toluene. Racemic alcohols were prepared by reduction of corresponding commercial ketones with NaBH₄ or NaBH₄/CeCl₃ (for enones)¹ and purified by flash column chromatography. The isothiocyanates used below were prepared according to Jacobsen.² Absolute configuration of **28**, **32**, **34**, and **36** assigned via comparison with authentic standards; the absolute configuration of **30** was made by analogy with the other examples generated using catalyst **D**.

⁽¹⁾ Luche, J.-P. J. Am. Chem. Soc. 1978, 100, 2226.

⁽²⁾ Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 15872–15883.

II. Preparation of catalysts

Catalysts C and D. 3,5-Bis(trifluoromethyl)phenyl isothiocyanate (1.3 mL, 7.1 mmol, 1.0 equiv) was added to a rt solution of (*R*,*R*)-cyclohexanediamine (970 mg, 8.51 mmol, 1.2 equiv) in anhydrous dichloromethane (20 mL). After 10 h, the reaction mixture was loaded onto a silica gel column and chromatographed using EtOAc/MeOH/NH₄OH (200:5:1→100:20:1) to give 1-((1*R*,2*R*)-2-aminocyclohexyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (catalyst C) ³ (2.0 g, 73%) as a yellow foam. TLC: R_f ~ 0.31 (EtOAc/MeOH/NH₄OH, 100:5:1); [α]²⁰_D = +76.9 (*c* 1.7, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 8.01 (s, 2H), 7.55 (s, 1H), 6.62 (br s, 1H), 3.37 (br s, 1H), 2.69-2.65 (m, 1H), 2.04 (br s, 2H, NH₂), 1.98-1.91 (m, 2H), 1.80-1.65 (m, 2H), 1.40-1.20 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 183.3, 142.0, 131.8 (q, *J*_{CF} = 33.9 Hz), 128.8, 125.2, 122.9, 121.5, 117.9, 117.7, 63.4, 56.8, 35.1, 32.3, 24.7; HRMS (FAB, NBA) Calcd. for C₁₅H₁₈N₃SF₆ [MH]⁺ *m/z* 386.1125, found 386.1128.

Benzaldehyde (0.578 mL, 5.45 mmol, 1.05 equiv) was added to a rt solution of catalyst C (2 g, 5.19 mmol, 1.0 equiv) in anhydrous MeOH (15 mL) under an argon atmosphere. After 4 h, the reaction mixture was cooled to 0 °C and NaBH₄ (211 mg, 5.71 mmol, 1.1 equiv) was added in portions. After another 20 min, saturated aq. NH₄Cl solution (50 mL) was added followed by conc. NH₄OH (2 mL). The resulting mixture was stirred for an additional 20 min, then extracted with dichloromethane (100 mL \times 5). After drying over Na₂SO₄, the combined organic extracts were evaporated to dryness. The residue was purified by flash chromatography on silica gel using hexanes/EtOAc/MeOH/NH₄OH (400:100:5:1) to afford 1 - ((1R, 2R) - 2 -(benzylamino)cyclohexyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (catalyst \mathbf{D})³ (2.02 g, 82%) as a pale yellow foam. The product was recrystallized from hexanes/CH₂Cl₂ as a white solid (75%), mp 140 °C-141 °C. TLC: $R_f \sim 0.48$ (CH₂Cl₂/MeOH, 9:1); ¹H NMR (CDCl₃, 300 MHz) δ

⁽³⁾ Han, B.; Liu, Q.-P.; Li, R.; Tian, X.; Xiong, X.-F.; Deng, J.-G.; Chen, Y.-C. *Chem. Eur. J.* **2008**, *14*, 8094–8097.

7.69 (s, 2H), 7.48 (s, 1H), 7.29-7.20 (m, 5H), 6.59 (br s, 1H), 3.97 (d, J = 12.3 Hz, 1H), 3.82 (d, J = 12.3 Hz, 1H), 3.44 (br s, 1H), 2.49-2.42 (m, 1H), 2.18-2.00 (m, 2H), 1.90-1.75 (m, 2H), 1.40-1.20 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 183.3, 141.8, 138.0, 131.5 (q, $J_{CF} \sim 30$ Hz), 129.1, 128.6, 128.3, 128.1, 125.0, 122.4, 121.4, 117.1, 64.4, 62.5, 54.7, 33.2, 32.6, 24.9, 24.6; HRMS (FAB, NBA) Calcd. for C₂₂H₂₄N₃SF₆ [MH]⁺ m/z 476.1595, found 476.1598.

Catalyst G. Following the general procedure used to synthesize catalyst **D**, (*S*)-2isothiocyanato-*N*,3,3-trimethylbutanamide was used to prepare catalyst **G** (54%). $[\alpha]^{20}{}_{D}$ = +54.9 (*c* 1.30, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.99 (br s, 1H), 7.39-7.20 (m, 5H), 5.94 (br s, 2H), 4.77 (d, *J* = 7.8 Hz, 1H), 3.79 (br s, 2H), 3.45 (br s, 1H), 2.78 (d, *J* = 4.8 Hz, 3H), 2.40-2.35 (m, 1H), 2.10-1.95 (m, 1H), 1.95-1.80 (m, 2H), 1.75-1.65 (m, 2H), 1.27-1.12 (m, 4H), 1.00 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz) δ 183.4, 171.5, 139.9, 128.7 (2C), 128.4 (2C), 127.3, 67.2, 61.1, 60.2, 51.7, 34.7, 32.8, 32.0, 27.0 (3C), 26.2, 24.8, 24.7; HRMS (ES) Calcd. for C₂₁H₃₅N₄OS [MH]⁺ *m/z* 391.2532, found 391.2529.

Catalyst H. Following the general procedure used to synthesize catalyst **D**, (*S*)-*N*-benzyl-2isothiocyanato-*N*,3,3-trimethylbutanamide was used to prepare catalyst **H** (50%). $[\alpha]^{20}{}_{D}$ = +24.5 (*c* 0.80, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 7.92 (br s, 1H), 7.35-7.20 (m, 5H), 6.06 (d, *J* = 1.2 Hz, 1H), 5.59 (d, *J* = 9.2 Hz, 1H), 4.94 (d, *J* = 14.4 Hz, 1H), 4.15 (d, *J* = 14.4 Hz, 1H), 3.80 (d, *J* = 13.6 Hz, 1H), 3.76 (d, *J* = 13.6 Hz, 1H), 3.46 (br s, 2H), 3.15 (s, 3H), 2.34-2.28 (m, 1H), 2.10-1.95 (m, 1H), 1.95-1.80 (m, 2H), 1.70-1.65 (m, 2H), 1.30-1.10 (m, 4H), 1.00 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz) δ 183.1, 172.2, 140.1, 137.1, 128.7 (2C), 128.6 (2C), 128.4 (4C), 127.6, 127.2, 61.4, 61.1, 60.2, 51.7, 51.4, 36.3, 36.2, 32.7, 31.9, 26.9 (3C), 24.8, 24.6; HRMS (FAB, NBA) Calcd. for C₂₈H₄₁N₄OS [MH]⁺ *m/z* 481.3001, found 481.2998.

Catalyst I. Following the general procedure used to synthesize catalyst **D**, (*S*)-*N*-((*R*)-1-(dimethylamino)-3-methyl-1-oxobutan-2-yl)-2-isothiocyanato-3,3-dimethylbutanamide was used to prepare catalyst **I** (50%). $[\alpha]^{20}_{D}$ = +32.9 (*c* 2.05, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.99 (br s, 1H), 7.29-7.18 (m, 5H), 6.75 (d, *J* = 7.8 Hz, 1H), 6.20 (d, *J* = 5.4 Hz, 1H), 4.78 (d, *J* = 5.1 Hz, 1H), 4.76 (d, *J* = 5.4 Hz, 1H), 3.77 (br s, 2H), 3.48 (br s, 1H), 3.03 (s, 3H), 2.91 (s, 3H), 2.40-2.35 (m, 1H), 2.10-1.80 (m, 3H), 1.75-1.60 (m, 2H), 1.27-1.08 (m, 4H), 1.01 (s, 9H), 094 (d, *J* = 7.2 Hz, 3H), 0.86 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 183.4, 171.1, 170.5, 140.1, 128.5 (2C), 128.3 (2C), 127.1, 67.2, 61.1, 60.2, 53.8, 51.7, 37.4, 35.7, 34.8, 32.5, 31.9, 31.7, 27.2 (3C), 24.7, 24.6, 19.9, 17.7; HRMS (ES) Calcd. for C₂₇H₄₆N₅O₂S [MH]⁺ *m/z* 504.3372, found 504.3374.

III. Reaction parameter optimization

a. Temperature dependence

b. Catalyst survey of 4-phenylbut-3(*E*)-en-2-one

c. Catalyst survey for 6-phenylhex-3(*E*)-en-2-one (**29**)

(A negative % ee indicates the *R*-enantiomer was produced)

d. Catalyst survey for 4-phenylbutan-2-one (33)

IV. General reduction procedure and examples

A mixture of catalyst **D** (12 mg, 0.025 mmol), 4Å molecular sieves (250 mg, freshly activated), and acetophenone (30 mg, 0.25 mmol) in toluene (0.7 mL) under an argon atmosphere was cooled to -78 °C. A solution of catecholborane (0.4 mL, 1.0 M in toluene, 0.4 mmol) was added slowly and the reaction mixture was placed in a -46 °C bath. After stirring for 24 h at -46 °C, MeOH (1 mL) followed by 3 N NaOH solution (1 mL) were added. The mixture was gradually warmed to room temperature and stirred for another 1 h and then extracted with Et₂O (20 mL × 3), dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel using hexanes/EtOAc (6:1) as eluent to give (*S*)-1-phenylethanol (**2**) as a colorless oil (27 mg, 88%). HPLC analysis: 98% ee using Chiralcel OD column (250 mm × 4.6 mm), 2% ^{*i*}PrOH/hexane, 1.0 mL/min, 254 nm, R_t (major) = 19.2 min, R_t (minor) = 15.0 min; major isomer [α]²⁰_D = -51.7 (*c* 1.09, CHCl₃), lit.⁴ (*R*)-1-phenylethanol, 96% ee, [α]_D = +42.92 (*c* 1.04, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.38-7.23 (m, 5H), 4.87 (q, *J* = 6.3 Hz, 1H), 2.03 (br s, 1H), 1.90 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 145.9, 128.6 (2C), 127.6, 125.5 (2C), 70.5, 25.3.

(*S*)-1-Phenylpropan-1-ol (4). 86% yield, 99% ee. HPLC analysis: Chiralcel OD column (250 mm × 4.6 mm), 2% *i*PrOH/hexane, 1.0 mL/min, 254 nm, R_t (major) = 17.3 min, R_t (minor) = 14.4 min; major isomer $[\alpha]^{20}_{D} = -47.4$ (*c* 1.48, CHCl₃), lit.⁵ (*S*)-1-phenylpropan-1-ol, 98% ee, $[\alpha]^{25}_{D} = -48.4$ (*c* 2.31, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.38-7.26 (m, 5H), 4.57 (t, *J* = 6.3 Hz, 1 H), 2.25 (br s, 1 H), 1.87-1.69 (m, 2H), 0.91 (t, *J* = 7.8 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 145.0, 128.5 (2C), 127.6, 126.1 (2C), 74.5, 41.3, 19.1, 14.1.

⁽⁴⁾ Sokeirik, Y. S.; Mori, H.; Omote, M.; Sato, K.; Tarui, A.; Kumadaki, I.; Ando, A. *Org. Lett.* **2007**, *9*, 1927–1929.

⁽⁵⁾ Lutz, C.; Knochel, P. J. Org. Chem. 1997, 62, 7895-7898.

OH

(*S*)-1-Phenylbutan-1-ol (6). 81% yield, 99% ee. HPLC analysis: Chiralcel OD column (250 mm × 4.6 mm), 1% *i*PrOH/hexane, 1.0 mL/min, 254 nm, R_t (major) = 23.8 min, R_t (minor) = 21.8 min); major isomer $[\alpha]^{20}{}_{\rm D}$ = -47.6 (*c* 0.50, CHCl₃), lit.⁶ (*R*)-1-phenylbutan-1-ol, 93% ee, $[\alpha]^{24}{}_{\rm D}$ = +42 (*c* 0.28, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.38-7.26 (m, 5H), 4.64 (t, *J* = 6.3 Hz, 1 H), 2.21 (br s, 1 H), 1.83-1.63 (m, 2H), 1.47-1.26 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 144.7, 128.5 (2C), 127.6, 126.1 (2C), 76.1, 31.9, 10.2.

(*S*)-1-*o*-Tolylethanol (8). 71% yield, 95% ee. HPLC analysis: Chiralpak AD column (250 mm × 4.6 mm), 2% *i*PrOH/hexane, 0.5 mL/min, 254 nm, R_t (major) = 24.4 min, R_t (minor) = 21.8 min; major isomer $[\alpha]^{20}_{D}$ = -70.0 (*c* 1.0, CHCl₃), lit.⁷ (*S*)-1-o-tolylethanol, 98% ee, $[\alpha]^{25}_{D}$ = -39.7 (*c* 0.56, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.52-7.49 (m, 1H), 7.27-7.12 (m, 3 H), 5.10 (q, *J* = 6.3 Hz, 1H), 2.34 (s, 3H), 2.16 (br s, 1 H), 1.45 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 143.9, 134.2, 130.4, 127.2, 126.4, 124.5, 66.8, 24.0, 19.0.

(*S*)-1-(3-(Trifluoromethyl)phenyl)ethanol (10). 92% yield, 96% ee. HPLC analysis: Chiralcel OD column (250 mm × 4.6 mm), 2% *i*PrOH/hexane, 1.0 mL/min, 254 nm, R_t (major) = 14.0 min, R_t (minor) = 17.6 min; major isomer $[\alpha]_D^{20} = -31.0$ (*c* 1.95, CHCl₃), lit. ⁸ (*S*)-1-(3-(trifluoromethyl)phenyl)ethanol, >99% ee, $[\alpha]_D^{20} = -27.9$ (c 1.64 in CH₃OH); ¹H NMR (CDCl₃,

⁽⁶⁾ Node, M.; Nishide, K.; Shigeta, Y.; Shiraki, H.; Obata, K. J. Am. Chem. Soc. 2000, 122, 1927–1936.

⁽⁷⁾ Evans, D. A.; Michael, F. E.; Tedrow, J. S.; Campos, K. R. J. Am. Chem. Soc. 2003, 125, 3534–3543.

⁽⁸⁾ Tanaka, K.; Katsurada, M.; Ohno, F.; Shiga, Y.; Oda, M. J. Org. Chem. 2000, 65, 432.

300 MHz) δ 7.63 (d, *J* = 0.6 Hz, 1H), 7.54-7.42 (m, 3H), 4.93 (q, *J* = 6.3 Hz, 1H), 2.33 (br s, 1H), 1.48 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 146.8, 131.0 (q, *J*_{CF} = 32.1 Hz), 129.1, 128.9, 124.4, 124.3, 122.4, 69.9, 25.4.

(*S*)-1-(4-Methoxyphenyl)ethanol (12). 80% yield, 97% ee. HPLC analysis: Chiralcel OB column (250 mm × 4.6 mm), 10% *i*PrOH/hexane, 0.5 mL/min, 254 nm, R_t (major) = 21.2 min, R_t (minor) = 18.6 min; major isomer $[\alpha]^{20}_{D}$ = -52.3 (*c* 1.55, CHCl₃), lit.⁴ (*R*)-1-(4-methoxyphenyl)ethanol, 92% ee, $[\alpha]_D$ = +40.64 (*c* 1.53, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.30-7.25 (m, 2H), 6.89-6.84 (m, 2H), 4.82 (q, *J* = 6.6 Hz, 1H), 3.79 (s, 3H), 2.22 (br s, 1H), 1.46 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 159.0, 138.1, 126.8 (2C), 113.9 (2C), 70.0, 55.4, 25.1.

(*S*)-1-(4-Fluorophenyl)ethanol (14). 84% yield, 99% ee. HPLC analysis: Chiralcel OB column (250 mm × 4.6 mm), 1% *i*PrOH/hexane, 0.6 mL/min, 254 nm, R_t (major) = 36.4 min, R_t (minor) = 43.0 min; major isomer $[\alpha]^{20}_{D}$ = -44.8 (*c* 1.40, CHCl₃), lit.⁹ (*S*)-1-(4-fluorophenyl)ethanol, 97% ee, $[\alpha]_{D}$ = -47.4 (*c* 0.0576, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.34-7.26 (m, 2H), 7.05-7.6.98 (m, 2H), 4.84 (q, *J* = 6.6 Hz, 1H), 2.27 (br s, 1H), 1.45 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 162.2 (d, *J*_{CF} = 243.8 Hz), 141.7 (d, *J* = 3.1 Hz), 127.2 (d, *J* = 7.9 Hz, 2C), 115.4 (d, *J* = 21.2 Hz, 2C), 69.8, 25.4.

⁽⁹⁾ Carter, M. B.; Schiøtt, B.; Gutiérrez, A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 11667.

(*S*)-1-(4-Chlorophenyl)ethanol (16). 94% yield, 99% ee. HPLC analysis: Chiralcel OB column (250 mm × 4.6 mm), hexane/EtOH (60:1), 0.5 mL/min, 254 nm, R_t (major) = 22.1 min, R_t (minor) = 25.8 min; major isomer $[\alpha]^{20}_{D}$ = -44.2 (*c* 1.80, CHCl₃), lit.¹⁰ (*S*)-1-(4-chlorophenyl)ethanol, 96% ee, $[\alpha]^{27}_{D}$ = -45.0 (*c* 0.90, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.33-7.25 (m, 4H), 4.86 (q, *J* = 6.0 Hz, 1H), 2.00 (br s, 1H), 1.43 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 144.4, 133.2, 128.7 (2C), 126.9 (2C), 69.9, 25.4.

(*S*)-1-(4-Bromophenyl)ethanol (18). 95% yield, 99% ee. HPLC analysis: Chiralcel OB column (250 mm × 4.6 mm), hexane/EtOH (60:1), 0.5 mL/min, 254 nm; R_t (major) = 24.5 min, R_t (minor) = 28.9 min); major isomer $[\alpha]^{20}{}_D$ = -36.9 (*c* 2.40, CHCl₃), lit.¹⁰ (*S*)-1-(4-bromophenyl)ethanol, 98% ee, $[\alpha]^{27}{}_D$ = -37.3 (*c* 1.1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.48-7.44 (m, 2H), 7.26-7.21 (m, 2H), 4.84 (q, *J* = 6.3 Hz, 1H), 2.02 (br s, 1H), 1.46 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 144.9, 131.7 (2C), 127.3 (2C), 121.3, 69.9, 25.4.

(*S*)-1,2,3,4-Tetrahydronaphthalen-1-ol (20). 86% yield, 99% ee. HPLC analysis: Chiralcel OD column (250 mm × 4.6 mm), 2% *i*PrOH/hexane, 1.0 mL/min, 254 nm, R_t (major) = 16.2 min, R_t (minor) = 18.6 min; major isomer $[\alpha]^{20}_{D}$ = +38.9 (*c* 1.45, CHCl₃), lit.⁷ (*S*)-1,2,3,4-tetrahydronaphthalen-1-ol, 91% ee, $[\alpha]^{25}_{D}$ = +31.2 (*c* 0.54, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.44-7.41 (m, 1H), 7.23-7.19 (m, 2H), 7.12-7.10 (m, 1H), 4.77 (t, *J* = 4.5 Hz, 1H), 2.88-2.68

⁽¹⁰⁾ Utsukihara, T.; Misumi, O.; Kato, N.; Kuroiwa, T.; Horiuchi C. A. *Tetrahedron: Asymmetry* **2006**, *17*, 1179–1185.

(m, 2H), 2.05 (br s, 1H), 2.02-1.75 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 138.9, 137.2, 129.1, 128.8, 127.6, 126.3, 68.2, 32.3, 29.3, 18.9.

(*S*)-Chroman-4-ol (22). 95% yield, 98% ee. HPLC analysis: Chiralcel OJ-H column (250 mm × 4.6 mm), 5% *i*PrOH/hexane, 1.0 mL/min, 254 nm, R_t (major) = 16.1 min, R_t (minor) = 21.2 min; major isomer $[\alpha]^{20}{}_{D}$ = -62.0 (*c* 1.8, CHCl₃), lit.¹¹ (*R*)-chroman-4-ol, >99% ee, $[\alpha]^{20}{}_{D}$ = +65 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.27 (dd, *J* = 7.5, 1.5Hz, 1H), 7.20 (dt, *J* = 9.0, 1.5 Hz, 1H), 6.90 (dt, *J* = 6.6, 0.9 Hz, 1H), 6.82 (d, *J* = 8.1 Hz, 1H), 4.70 (q, *J* = 5.1 Hz, 1H), 4.23 (dd, *J* = 3.0, 1.2 Hz, 1H), 4.21 (d, *J* = 3.9 Hz, 1H), 2.51 (d, *J* = 4.8 Hz, 1H), 2.12-1.91 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 154.6, 129.9, 129.8, 124.4, 120.6, 117.1, 63.2, 62.0, 30.9.

(*S*)-1-(Naphthalen-2-yl)ethanol (24). 93% yield, 98% ee. HPLC analysis: Chiralcel OJ-H column (250 mm × 4.6 mm), 5% *i*PrOH/hexane, 1.0 mL/min, 254 nm, R_t (major) = 25.7 min, R_t (minor) = 33.7 min); major isomer $[\alpha]^{20}{}_{D}$ = -50.0 (*c* 2.0, CHCl₃), lit.⁷ (*S*)-1-(naphthalen-2-yl)ethanol, 94% ee, $[\alpha]^{25}{}_{D}$ = -40.6 (*c* 0.8, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.85-7.79 (m, 2H), 7.52-7.45 (m, 2H), 5.03 (q, *J* = 6.6 Hz, 1H), 2.33 (br s, 1H), 1.57 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 143.3, 133.4, 133.0, 128.4, 128.0, 127.8, 126.2, 125.9, 124.0, 123.9, 70.6, 25.2.

⁽¹¹⁾ Wettergren, J.; Bogevig, A.; Portier, M.; Adolfssona, H. Adv. Synth. Catal. 2006, 348, 1277–1282.

OH

(*S*)-1-(Thiophen-2-yl)ethanol (26). 66% yield, 97% ee. HPLC analysis: Chiralcel OD column (250 mm × 4.6 mm), 2% *i*PrOH/hexane, 1.0 mL/min, 254 nm, R_t (major) = 30.0 min, R_t (minor) = 38.3 min; major isomer $[\alpha]^{20}{}_D$ = -24.6 (*c* 0.90, CHCl₃), lit.¹² (*S*)-1-(thiophen-2-yl)ethanol, 99% ee, $[\alpha]^{24}{}_D$ = -26.0 (*c* 1.02, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.26-7.21 (m, 1H), 6.98-6.94 (m, 2H), 5.09 (q, *J* = 6.6 Hz, 1H), 2.61 (br s, 1H), 1.57 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 150.0, 126.7, 124.5, 123.3, 66.2, 25.3.

(*S*)-4-Phenylbut-3(*E*)-en-2-ol (28). 78% yield, 90% ee. HPLC analysis: Chiralcel OD column (250 mm × 4.6 mm), 10% *i*PrOH/hexane, 0.5 mL/min, 254 nm, R_t (major) = 22.8 min, R_t (minor) = 16.0 min; major isomer $[\alpha]^{20}_{D}$ = -28.6 (*c* 1.4, CHCl₃), lit.⁴ (*S*)-4-phenylbut-3(*E*)-en-2-ol, 92% ee, $[\alpha]^{25}_{D}$ = +16.4 (*c* 0.9, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.40-7.22 (m, 5H), 6.57 (d, *J* = 15.9 Hz, 1H), 6.27 (ddd, *J* = 15.9, 6.3, 0.9 Hz, 1H), 4.87 (p, *J* = 6.3 Hz, 1H), 2.12 (br s, 1H), 1.37 (d, *J* = 6.3 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 136.8, 133.7, 129.5, 128.7 (2C), 127.7, 126.5 (2C), 69.0, 23.5.

6-Phenylhex-3(*E***)-en-2-one (29).** ¹H NMR (CDCl₃, 300 MHz) δ 7.32-7.17 (m, 5H), 6.82 (dt, *J* = 16.2 , 6.6 Hz, 1H), 6.09 (d, *J* = 16.2 Hz, 1H), 2.79 (t, *J* = 8.4 Hz, 2H), 2.59-2.51 (m, 2H), 2.22 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 198.6, 147.1, 140.7, 131.7, 128.6 (2C), 128.4 (2C), 126.3, 34.4, 34.1, 26.9; ES-MS [MH]⁺ *m*/*z* 175.1.

⁽¹²⁾ Ohkuma, T.; Koizumi, M.; Yoshida, M.; Noyori, R. Org. Lett. 2000, 2, 1749–1751.

(*S*)-6-Phenylhex-3(*E*)-en-2-ol (30). 88% yield, 86% ee. HPLC analysis: Chiralcel OD column (250 mm × 4.6 mm), 5% *i*PrOH/hexane, 1.0 mL/min, 254 nm, R_t (major) = 20.5 min, R_t (minor) = 13.0 min; major isomer $[\alpha]^{20}_{D}$ = -8.8 (*c* 1.95, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.32-7.19 (m, 5H), 5.68 (dt, *J* = 15.6, 6.5 Hz, 1H), 5.53 (dd, *J* = 15.6, 6.3 Hz, 1H), 4.26 (p, *J* = 6.3 Hz, 1H), 2.71 (t, *J* = 7.5 Hz, 2H), 2.35 (q, *J* = 7.5 Hz, 2H), 1.68 (br s, 1H), 1.25 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 141.9, 135.0, 130.2, 128.6 (2C), 128.5 (2C), 126.0, 69.1, 35.8, 34.1, 23.5; ES-MS [MH]⁺ *m/z* 177.1.

(*S*)-1-Cyclohexenylethanol (32). 82% yield, 97% ee. HPLC analysis: Chiralcel OB column (250 mm × 4.6 mm), 0.5% *i*PrOH/hexane, 0.5 mL/min, 202 nm, R_t (major) = 12.7 min, R_t (minor) = 16.0 min; major isomer $[\alpha]^{20}_{D}$ = -9.5 (*c* 1.2, CHCl₃), lit.⁷ (*S*)-1-cyclohexenylethanol, 91% ee, $[\alpha]^{25}_{D}$ = -9.4 (*c* 1.5, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 5.67 (br s, 1H), 4.22-4.10 (m, 1H), 2.02-1.99 (m, 4H), 1.67-1.53 (m, 4H), 1.38 (d, *J* = 3.6 Hz, 1H), 1.25 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 141.4, 121.7, 72.4, 25.0, 23.8, 22.8, 22.7, 21.7.

(*S*)-4-Phenylbutan-2-ol (34). 92% yield, 79% ee. HPLC analysis: Chiralcel OD column (250 mm × 4.6 mm), 10% *i*PrOH/hexane, 0.5 mL/min, 254 nm, R_t (major) = 15.5 min, R_t (minor) = 11.1 min; major isomer $[\alpha]^{20}_{D}$ = +13.8 (*c* 1.70, CHCl₃), lit.⁴ (*R*)-4-phenylbutan-2-ol, 88% ee, $[\alpha]^{22}_{D}$ = -17.32 (*c* 1.6, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.34-7.18 (m, 5H), 3.89-3.80 (m, 1H), 2.83-2.64 (m, 2H), 1.89 (br s, 1H), 1.86-1.75 (m, 2H), 1.25 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 142.2, 128.5 (4C), 125.9, 67.5, 40.9, 32.2, 23.6.

OH C

(*S*)-1-Cyclohexylethanol (36). 68% yield, 91% ee. HPLC analysis of 4-nitrobenzoate: Chiralcel OJ-H column (250 mm × 4.6 mm), 0.1% *i*PrOH/hexane, 0.4 mL/min, 254 nm, R_t (major) = 31.9 min, R_t (minor) = 35.0 min); major isomer $[\alpha]^{20}_{D}$ = +3.71 (*c* 0.70, CHCl₃), lit. ¹³ (*R*)-1-cyclohexylethanol, 67% ee, $[\alpha]_{D}$ = -1.90 (*c* 0.75, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 3.52 (p, *J* = 6.3 Hz, 1H), 1.85-1.63 (m, 5H), 1.52 (br s, 1H), 1.35-0.85 (m, 6H), 1.13 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 72.3, 45.2, 28.8, 28.5, 26.6, 26.3, 26.2, 20.5.

⁽¹³⁾ Gamble, M. P.; Smith, A. R. C.; Wills, M. J. Org. Chem. 1998, 63, 6068-6071.

V. Chiral HPLC analyses

(S)-1-Phenylethanol (2)

[Chiralcel OD column (250 mm × 4.6 mm), 2% *i*PrOH/hexane, 1.0 mL/min, 254 nm]

Detector A (Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	16.468	175384	4913	0.888	1.760				
2	20.695	19582790	274225	99.112	98.240				
Total		19758174	279138	100.000	100.000				

(S)-1-Phenylpropan-1-ol (4)

2

Total

17.526

3665159

7328440

84671 181561 50.013

100.000

46.635

100.000

22.5 min

C:\LabSolutions\Data\Derun Li\Led-VII-126.lcd mAU Det.A Ch1 388 100 50 14.444 0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

1 Det.A Ch1/254nm

Detector A C	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.444	32400	1026	0.501	0.752
2	17.388	6438129	135380	99.499	99.248
Total		6470530	136406	100.000	100.000

(S)-1-Phenylbutan-1-ol (6)

Total

2162641

[Chiralcel OD column (250 mm × 4.6 mm), 1% *i*PrOH/hexane, 1.0 mL/min, 254 nm]

100.000

100.000

(S)-1-o-Tolylethanol (8)

[Chiralpak AD column (250 mm × 4.6 mm), 2% *i*PrOH/hexane, 0.5 mL/min, 254 nm]

Pe	ak]	Га	hl	e
	m r :	ւս	ω,	-

etector A Ch1 245nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	21.594	9263298	279274	49.986	54.041		
2	24.217	9268335	237510	50.014	45.959		
Total		18531633	516784	100.000	100.000		

(S)-1-(3-(Trifluoromethyl)phenyl)ethanol (10)

[Chiralcel OD column (250 mm × 4.6 mm), 2% *i*PrOH/hexane, 1.0 mL/min, 254 nm] C:\LabSolutions\Data\Derun Li\Led-VII-131-29A.lcd

1 Det.A Ch1/254nm

	PeakTable						
etector A C	Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	14.441	5024407	173407	48.499	54.921		
2	17.388	5335511	142332	51.501	45.079		
Total		10359918	315739	100.000	100.000		

PeakTable Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	14.059	17841692	469701	98.027	97.510	
2	17.656	359153	11992	1.973	2.490	
Total		18200845	481694	100.000	100.000	

MeO

(S)-1-(4-Methoxyphenyl)ethanol (12)

[Chiralcel OB column (250 mm × 4.6 mm), 10% *i*PrOH/hexane, 0.5 mL/min, 254 nm]

PH F

(S)-1-(4-Fluorophenyl)ethanol (14)

etector A C	PeakTable						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	36.457	21935304	152759	99.530	99.336		
2	43.071	103686	1021	0.470	0.664		
Total		22038989	153781	100.000	100.000		

CI

(S)-1-(4-Chlorophenyl)ethanol (16)

Br

(S)-1-(4-Bromophenyl)ethanol (18)

1 Det.A Ch1/254nm

PeakTable PeakTable						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	24.568	10029031	110179	99.591	99.486	
2	28.923	41200	569	0.409	0.514	
Total		10070230	110749	100.000	100.000	

OH OH

(S)-1,2,3,4-Tetrahydronaphthalen-1-ol (20)

[Chiralcel OD column (250 mm × 4.6 mm), 2% *i*PrOH/hexane, 1.0 mL/min, 254 nm]

0-

ó

(S)-Chroman-4-ol (22)

[Chiralcel OJ-H column (250 mm × 4.6 mm), 5% *i*PrOH/hexane, 1.0 mL/min, 254 nm]

	PeakTable							
Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	16.123	3230933	102963	98.773	98.918			
2	21.225	40140	1126	1.227	1.082			
Total		3271073	104090	100.000	100.000			

15

10

5

20

30

35

40 min

25

(S)-1-(Naphthalen-2-yl)ethanol (24)

	1 254		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	25.726	12702118	267391	99.085	99.166
2	33.771	117315	2250	0.915	0.834
Total		12819433	269641	100.000	100.000

OH S

(S)-1-(Thiophen-2-yl)ethanol (26)

[Chiralcel OD column (250 mm × 4.6 mm), 2% *i*PrOH/hexane, 1.0 mL/min, 254 nm]

Ph

(S)-4-Phenylbut-3(E)-en-2-ol (28)

[Chiralcel OD column (250 mm × 4.6 mm), 10% *i*PrOH/hexane, 0.5 mL/min, 254 nm]

etector A ('h1 254nm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.029	1430847	41278	5.054	7.250
2	22.807	26881031	528072	94.946	92.750
Total		28311878	569350	100.000	100.000

(S)-6-Phenylhex-3(E)-en-2-ol (30)

[Chiralcel OD column (250 mm × 4.6 mm), 5% *i*PrOH/hexane, 1.0 mL/min, 254 nm]

1 Det.A Ch1/254nm

etector A C	h1 254nm		PeakTab	le	
Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.011	2559620	80983	50.768	61.555
2	20.532	2482162	50580	49.232	38.445
Total		5041781	131563	100.000	100.000

1 Det.A Ch1/254nm

etector A C	'h1 254nm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.020	382399	11539	6.915	9.937
2	20.556	5147705	104585	93.085	90.063
Total		5530104	116125	100.000	100.000

QН

(S)-1-Cyclohexenylethanol (32)

[Chiralcel OB column (250 mm × 4.6 mm), 0.5% *i*PrOH/hexane, 0.5 mL/min, 202 nm] C:\LabSolutions\Data\Derun Li\Led-VII-162-25OB995A.lcd

Peak#	Ret. Time	Area	Height	Area %
1	12.271	23025141	486438	52.962
2	15.111	20449762	334456	47.038
Total		43474904	820894	100.000

1 Det.A Ch1/202nm

Peak#

PeakTable				
1	Ret. Time	Area		
1	12 740	22007040	-	

ak#	Ret. Time	Area	Height	Area %
1	12.740	22007040	483626	98.860
2	16.036	253845	5611	1.140
Total		22260885	489237	100.000

OH Ph (S)-4-Phenylbutan-2-ol (34)

[Chiralcel OD column (250 mm × 4.6 mm), 10% *i*PrOH/hexane, 0.5 mL/min, 254 nm]

1 Det.A Ch1/254nm

			PeakTable		
etector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.109	9759084	346012	43.554	49.022
2	14.705	12647542	359811	56.446	50.978
Total		22406626	705822	100.000	100.000

1 Det.A Ch1/254nm

PeakTable PeakTable					
Peak#	Ret. Time	Area	Height	Area %	
1	11.165	1103157	38484	10.580	
2	15.525	9323368	250740	89.420	
Total		10426526	289224	100.000	

(S)-1-Cyclohexylethyl 4-nitrobenzoate (4-nitrobenzoate of 36)

[Chiralcel OJ-H column (250 mm × 4.6 mm), 0.1% *i*PrOH/hexane, 0.4 mL/min, 254 nm]

1 Det.A Ch1/254nm

PeakTable etector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	
1	31.974	39677846	617205	48.571	
2	34.427	42011827	557503	51.429	
Total		81689673	1174708	100.000	

1 Det.A Ch1/254nm

Detector A C	etector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %		
1	31.921	46434821	713230	95.803		
2	35.051	2034201	34307	4.197		
Total		48469022	747537	100.000		

ŕ.

HO-

