Pr dings of the National Academy of Sciences
Vol. 66, No. 1, pp. 87-93, May 1970

Selection and Polygenic Characters*

Montgomery Slatkin
PIERCE HALL, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS

Communicated by E. O. Wilson, February 20, 1970

Abstract. A mathematical model is developed which describes the effect of
selection on polygenic or continuously varying phenotypic characters. For the
simplest case the standard deviation of a phenotypic character in a population
cannot be greater than /28 where 8 is the expected deviation of the offspring
from the average of the parents’ types. This is found to carry over to density-
dependent selection, and it indicates that there are limits to the amount of
phenotypic diversity, and therefore niche breadth, which a population can main-
tain. These limits, however, are also subject to selection.

Introduction. A model will be presented here that describes the effects of
normalizing selection on polygenic or continuously varying phenotypic charac-
ters. This type of selection is called either “optimizing’’! or “stabilizing.”? In
the nuances of current usage, optimizing selection refers to any situation where
an intermediate value of a phenotypic character is favored, while stabilizing
selection is the artificial removal of extreme types in the course of selection ex-
periments.?

Optimizing selection has been particularly difficult to model because of the gap
in our knowledge between the well-founded theory of population genetics based
on elementary Mendelian mechanics and empirical observations on the inheri-
tance properties of polygenic characters. At this time we are unable to describe
the effects of individual genes on a continuously varying character in order to
develop an accurate model of the effect of selection. Ultimately, the effects of
individual alleles will have to be known before a complete model can be made.
Because of this present lack of knowledge, theoreticians are forced to make some-
what arbitrary assumptions about the effect of single alleles. They usually
assume some additive value for each of the alleles or else prescribe nonadditive
effects in a table that gives the correspondence between the possible genotypes
and phenotypes. Models have been developed thereby which explore the con-
sequences of selection, linkage, and inbreeding, either analytically with two loci
or numerically with more loci.4—¢

I would like to suggest a different and much more direct approach to this
problem. Let us assume that there is a certain amount of heterozygosity present
and then look at the consequences of different strengths of selection. We can
proceed by assuming that the level of heterozygosity in a population manifests
itself in the phenotypic diversity of the offspring of a single mating. Although
the phenotypic diversity will of course depend on more than genetic factors, there
must be some correlation between the phenotypes of the parents and offspring;
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and it is this correlation by which the inheritance properties of the phenotypic
character can be specified. In this way it is possible to avoid the necessity of a
direct statement about the underlying genetic description of the population.
This approach has the advantage of working directly at the phenotypic level
where selection acts and the disadvantage of ignoring the genetic mechanisms
which must be present. While the model will be necessarily incomplete, the
principal result to be presented, that the phenotypic diversity is not strongly de-
pendent on the strength of selection, should carry over to more accurate and
detailed models.

The Model. Let us assume that the generations are nonoverlapping and
that each generation consists of two parts, mating and the action of selection.
The frequency distribution of a phenotypic character, 2, is given by a function
p(2). p(z) must be normalized, that is,

2o P(2)dz = 1.

If z is outside physiological limits, then p is 0 so the limits of the integrals can
always be infinite. Because of the artificial separation of selection and mating,
there is a choice as to whether p(z) describes the population before or after selec-
tion. Either choice will lead to essentially the same result, however, the mathe-
matical formulation is slightly different. I will assume p(z,f) is the distribution
in generation ¢ before selection.

The basic assumption for this model is that the distribution of the character in
the offspring of a mating depends only on the value of character in the two
parents. This can be described by a conditional probability, L(z;21,2;), which is
the frequency distribution of z in the offspring of a mating of type 2, with type
2z5. L replaces the Mendelian formulation of mating. Since L is a probability, it
also must be normalized.

(J2e L(zz,2)dz = 1.)

In theory L could be determined from the careful analysis of breeding experi-
ments, but this would be extremely difficult in practice.

The distribution in the next generation is found by summing over all possible
combinations of matings, each weighted by its probability of occurrence. In a
randomly mating population, the probability of type 21 mating with type z; is
p(z1)p(z;). Thus, the distribution function in the next generation is given by

P(Z:t + h) = f:w L(Z;zl:zil)pC(zl»t)pt(h’t)dzldz% (l)

where h is the generation time. The subseript s is added on the right to em-
phasize that these are the distribution functions after selection, while p(z,¢) is
the distribution before selection.

The action of selection is described by a function S(z) which assigns a relative
probability of survival to all individuals of type 2. Since only the relative
probabilities are important, S can be multiplied by a constant without changing
the result. This is only true because population size is constant and the only
question is which individuals make up the next generation. After selection, the
distribution is changed to

Pu(zt) = 8@pe)/ S p)S(2)dz, @
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where the denominator is present to assure that p, is normalized. Let us assume
that S does not change with time. From (1) and (2), the final equation for the
model is

S 28 p(21,)p(22,1) S (21) S (22) L (2521,22) dendlze
(2. p(2t)8(2)d2)?

In principle, L and S can be experimentally determined and the time evolution of
p(z) can be measured and compared with the theoretical prediction to test the
model. Let us be content to assume specific forms for L and S and explore the
consequences of these assumptions.

The simplest form of L is found by assuming that z in the offspring of a mating
of types z and 2, is distributed about the average of z; and 2z,. Still a further
simplifying assumption is that the variance of the offspring is independent of
the parental types. It is unlikely that this could be accurate for all parental
types. However the chance of a mating between two extreme types is small so
an error in the description of their offspring will not affect the result by much.
Therefore this assumption has to be satisfied in the range of z where most of the
population is found. With these assumptions L can be written

2 + 22)
2 ’

(et + h) = 3)

L(z;2125) = L (z - 4)
where L is now a function of a single variable. We could reasonably expect
L is symmetric about 0 and monotonically decreasing from its value at 0. L
is characterized by a “width,” 8 where

B2 = f2.22L(z)de. )

B is the expected deviation in the offspring from the average of the parental
types. The basic assumption is that the heterozygosity in the population will
manifest itself in 8. There is no attempt to explain the maintenance of the
heterozygosity. At the risk of increasing the semantic load in population
genetics, let us call B the “reproductive variance.” Even for a population which
does not satisfy equation (4), it would be possible to define a measure of the re-
productive variance which would reduce to (5) when (4) is satisfied. For ex-

example:
gt = f:a, (Z a + ) L(Z 21,22)d21d22

Now, of course, 8 depends on 2z, and 2, but if this 8 is within certain bounds, then
it still will be a useful quantity for describing the population. Let us show that
B sets the scale of variability for a population.

At this time, we are interested in only the equilibrium situation. With (4),
the equilibrium form of (3) is

f:.fL(z -t “)p(a)p(z»S(zoS(zz)dzldzz
. p(2)S(2)dz)? ’

(6)

p(e) =
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Since B can change over a longer time scale, this is only a “quasi-equilibrium’’
as used in thermodynamics.

Optimizing selection: In the case of simple optimizing selection, S(z) has a
maximum at the optimum value, z, of the character. S then decreases from
the maximum and has a characteristic width, ¢, where

o = [2.(z — 2)28(x)dz. )

o is a measure of the strength of selection or the tolerance of the environment
to nonoptimal phenotypes. Small ¢ represents strong selection and large o
weak selection.

When 8 is symmetric about z, we can expect the solution to equation (6),
p(2), to be a function with its mean at z and which is symmetric about z = .
If each side of (6) is multiplied by (z — z)? and integrated fromz = — otoz =
+ », then

S2a (e — 2)p()S(2)dz

* p@S@)d ®

of = 8 +

where
ot = f2,(z — x)p()dz. 9)

a is the variance of the phenotypic character in the population. The second
term on the right is positive so a* > 82. The largest value the second term can
have is «?/2. This can be seen if we recall that

o — POSE)
PR = fo o p@)8G)

so that the integration is just giving the standard deviation of p;, the distribution
function after selection. Clearly, p; could not have a larger standard derivation
than p because optimizing selection could not increase the variance. Therefore

B < o® < 268 (10)

independent of the width of S. The lower limit is approached for small ¢; the
upper limit, for large ¢. In the latter case, S does not change much in regions
where p is nonzero. The scale of change of S is ¢? and the scale of pis 82. There-
fore, if B?/0% < 1, in the integral in (8), S can be expanded in a power series
about z = x. Thus, S can be replaced by

s2) ~ 1+ a% z—2x)?2+ 0((%), 11)

where k is a constant of 0(1). As long as selection is weak, any symmetric selec-
tion function is essentially the so-called ‘‘quadratic deviation” model. If selec-
tion is strong, the quadratic deviation model assigns negative fitnesses to a sig-
nificant fraction of the population and a different functional form must be taken.
Density-dependent selection!!: If, instead of simple optimizing selection, we
consider the case of optimizing selection which is density dependent, the result



VoL. 66, 1970 GENETICS: M. SLATKIN 91

does not change significantly. In this case, the selective advantage of type 2
depends on p(z) as well as z. For example,

8() = Su(2)(1 — Ap(2)), (12)

where Sy(2) is selective function for simple optimizing selection which was de-
scribed above. The selective advantage of the optimal type is reduced as an
increased fraction of the population has the optimal type. This could occur
when z is a measure of some character which is adapted to a particular food size.
If the food supply is limited, then the selection should be density dependent.
N describes the amount of competition coming from individuals with the same
value of the phenotypic character.

We could expect that this type of selection should increase the variance of the
character in the population. The question is by how much is aincreased. While
there is no simple analytic way to put bounds on « as there is for A = 0, let us
try to demonstrate that the upper bound on « is not changed by much for A > 0,
until A becomes unreasonably large. This result is not surprising because, as
p(2) becomes flatter and broader because of the density effect, the importance
of the density effect is decreased.

In the limit of very large o, equation (8) becomes

wreg 4 Lf2=p@0 — 2E)E — 2)'d:
2 1 — N f2.p*(e)dz

as long as @ < o. The value of the integral term depends on the particular
functional form of p, so the dependence of a on A ecannot be determined without
more knowledge of the system. However, if we assume p(z) is exactly Gaussian,
then the integrals can be evaluated. This should provide an approximate result.

13)

1a? — \/7/2
2 gy -~ VvVH/a 14
=t I T wr2a (14)
The positive solution to this cubic equation is given by standard formulas as
a
a = \/5 cos ¢, (15)

where a = 282 + (3x/16)A2 and 0 < ¢ < #/6. Thus « is bounded by v/282-
[14 (3x/3%)(\2/B%)]”%. Of course this is only an approximation because p is not
necessarily Gaussian. This model was tested numerically by assuming a
Gaussian form for L and S and finding the solution to equation (6) with S given
by (12). This was done by iterating equation (3) for different initial distribu-
tions until equilibrium was reached. This also confirmed the fact that the
equilibrium solution is stable and independent of initial conditions. The results
are shown in Figure 1 for A = 0,2,4. In Table 1, the standard deviations found
from the computer study are compared with those estimated from equation (14).
The second values are consistently larger indicating that the actual distribu-
tion is flatter than the Gaussian with the same standard deviation. That is,
the higher order moments are larger than those for the Gaussian. Thus, equa-
tion (15) provides the upper bound to « as ¢ increases, although this would have
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no meaning if A is too large. However,
for moderate values of A and o, it is
clear that « will still be of the same
order of magnitude as 8 and the diver-
sity is still limited by the reproductive
variance.

Discussion. The consequence of this
simple model is that the variance of a
phenotypic character in a population is
primarily determined by the reproduc-
tive variance and only secondarily by
the strength of selection. The exact
value of a, the variance of a character,
depends on the particular form of the
selection funection, S(2), but the range

Fia. 1. of possible values is limited. The sig-

nificance of this result is that it is not

‘TasBLE 1. necessary to assume the existence of
strong selective forces in order to ex-
plain a lack of phenotypic diversity.

o/
Result from Approx. result
computer using eq. (14)

>
h
®

1 1.435 1.76 Even in the presence of weak selection,
2 1.543 2.16 there is no tendency for the distribu-
i }ggi :2,,‘;; tion function, p(2), to broaden beyond
5 2.107 +/2 B. This is because of the random

mating which causes extreme types to
mate most frequently with types near the mean, causing their offspring to be
less extreme.

The diversity of certain phenotypic characters has often been taken by ecolo-
gists as a measure of niche breadth, on the assumption that the values of the
phenotypic character places a limit on the part of the environment which can be
utilized.8: 7 For such a character it is commonly assumed that the niche breadth
is limited by competition from other population. But the present analysis
shows that the genetic system places a stringent upper limit on niche breadth.
This could explain why, in the absence of competition, many island populations
still show little or no increase in phenotypic variance. Moreover, the increase
in variance observed could be accounted for by an increase in the density effect.
If the food supply is lower on an island, then there is increased competition from
individuals of the same type, so \ is larger.

The function L(2;21,2:), which describes the inheritance properties of a char-
acter, must also be thought of as being affected by selection, only over a longer
time scale. For example, if S(z) is a narrow (¢ << 8), there would be a selective
advantage to reducing the reproductive variance in order to reduce the segrega-
tional load. This would not be group selection because an individual which
tends to have its offspring nearer the optimal value would individually have a
higher fitness. Hence, there would be a long term selective advantage to de-
creasing 8. This would have to be balanced by a selective force to increase g,
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that is, a selective force for increased heterozygosity. This would also act over
a long time and would be a consequence of the need to adapt to changes in the
environment. Mather® has called this balance of selective forces the ‘‘relational
balance” which determines the genetic background of the character. Unless
the population is subject to violent changes in environmental conditions it is
reasonable to suppose that selection would act on L until 3~ «. The advantage
of reducing 8 beyond this would not be significant. )

Biologists have recognized that natural selection can act over different time
scales at the same time. Waddington® emphasized this by the use of the terms
“normalizing” and ‘“canalizing’’ selection. In terms of this model, S(z) de-
scribes the normalizing selection, while the selection acting to alter L is the
canalizing selection. Mayr! discusses this same idea in terms of the effect of
cohesive factors (in the genetic system) on selection. He points out that cohesive
factors are also subject to selective forces. Most mathematical modelers have
concentrated their efforts on describing the effects of normalizing selection,
without accounting for the fact that selection can act to modify the effect of
normalizing forces. It is clear from the results of this model that both normaliz-
ing and canalizing selection must be accounted for before a full description of the
evolution of a population can be accomplished.
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