Supporting information for

How Does the Reductase Help Regulating the Catalytic Cycle of Cytochrome P450 3A4 Using the Conserved Water Channel?

Dan Fishelovitch, Sason Shaik, Haim J. Wolfson, Ruth Nussinov

Table of contents:

- 1. Ferric heme topology
- 2. Testosterone topology file
- 3. Ferric heme QM/MM optimized coordinates
- 4. Additional figures
- 5. Calculated PKa values

<u>1. Ferric heme topology</u>

RESI HEC2		-2.00	
!cysteine			
GROUP			
ATOM N	NH1	-0.57!	
ATOM HN	Н	0.40! HN-N	
АТОМ СА	CT1	-0.01! HB1	
ATOM HAY	HB		
GROUD	ш	I HAY-CACBSC move definition of HA>HAY	
ATOM CD	CC		
ATOM UD1	υл		
ATOM HD1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
ATOM RDZ	пА		
ATOM SG	22	-0.05!	
GROUP	a	0.50	
ATOM C	C	0.50	
ATOM O	0	-0.50	
GROUP			
ATOM FE	FE	0.74! O2A O1A O2D O1D	
ATOM NA	NPH	-0.77! \\ // \\ //	
ATOM NB	NPH	-0.77! CGA CGD	
ATOM NC	NPH	-0.77!	
ATOM ND	NPH	-0.77! HBA1CBAHBA2 HA HBD1CBDHBD2	
ATOM C1A	CPA	0.27!	
ATOM C2A	CPB	0.04! HAA1CAA-HAA2 _CHA_ HAD1CADHAD2	
ATOM C3A	CPB	0.04! / \	
ATOM C4A	CPA	0.27! C2AC1A C4DC3D	
ATOM C1B	CPA	0.27!	
ATOM C2B	CPB	0.04!HMA1\ /HMD1	
ATOM C3B	CPB	-0.04!HMA2-CMAC3A NA ND C2DCMD-HMD2	
ATOM C4B	CPA	0.27 HMA3/ $/$ $/$ $/$ $/$ HMD3	
ATOM C1C	CPA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
ATOM C2C	CDB	0.21	
	CDB	-0.021 HB $$ CHB FF CHD $$ HD	
ATOM CAC	СГД	0.02. In the the result of the	
	CDA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
ATOM CID	CPA	0.27: CID / (CHC IIAC)	
ATOM CZD	CPD		
ATOM CSD	CPB	0.04:HMB2-CMBCZB NB NC CSCCAC	1
ATOM C4D	CPA		-
GROUP	abu		
ATOM CHA	CPM	-0.13! C3B $C4B$ C1C $C2C$ (HBC)	2
ATOM HA	HA		
GROUP	~~	! CAB CMCHMC3	
ATOM CHB	СРМ	-0.13! // \ HC /	
ATOM HB	HA	0.13! CBB HAB HMC1 HMC2	
GROUP		! / \	
ATOM CHC	CPM	-0.13! HBB1 HBB2	
ATOM HC	HA	0.13!	
GROUP			
ATOM CHD	CPM	-0.13	
ATOM HD	HA	0.13	
GROUP			
ATOM CMA	CT3	-0.48	
ATOM HMA1	HA	0.16	
ATOM HMA2	HA	0.16	
ATOM HMA3	HA	0.16	
GROUP			
ATOM CAA	CT2	-0.30	
	ци	0.15	
	пA	0.15	

ATOM	HAA2	HA	0.15				
GROUI	GROUP						
ATOM	CBA	CT2	-0.34				
ATOM	HBA1	HA	0.15				
ATOM	HBA2	HA	0.15				
ATOM	CGA	CC	0.50				
ATOM	01A	OC	-0.73				
ATOM	02A	OC	-0.73				
GROUI	2						
ATOM	CMB	CT3	-0.48				
ATOM	HMB1	HA	0.16				
ATOM	HMB2	HA	0.16				
ATOM	HMB3	HA	0.16				
GROUI	2						
ATOM	CAB	С	-0.20				
ATOM	HAB	HA	0.20				
GROUI	2						
ATOM	CBB	С	-0.30				
ATOM	HBB1	HA	0.15				
АТОМ	HBB2	HA	0.15				
GROUI	2						
АТОМ	CMC	CT3	-0.48				
АТОМ	HMC1	HA	0.16				
АТОМ	HMC2	HA	0.16				
ATOM	HMC3	HA	0.16				
GROUI	2						
АТОМ	CAC	С	-0.20				
АТОМ	HAC	HA	0.20				
GROUI	2						
АТОМ	CBC	С	-0.30				
АТОМ	HBC1	HA	0.15				
ATOM	HBC2	HA	0.15				
GROUI	2						
АТОМ	CMD	CT3	-0.48				
АТОМ	HMD1	HA	0.16				
ATOM	HMD2	HA	0.16				
ATOM	HMD3	HA	0.16				
GROUI	2						
ATOM	CAD	CT2	-0.30				
ATOM	HAD1	HA	0.15				
ATOM	HAD2	НА	0.15				
GROUI	2						
ATOM	CBD	CT2	-0.34				
ATOM	HBD1	HA	0.15				
ATOM	HBD2	HA	0.15				
ATOM	CGD	CC	0.50				
ATOM	01D	OC.	-0.73				
ATOM	02D	OC.	-0.73				
0-1							

Fe and S related missing parameters were added from Autenrieth et al. (Autenrieth F, Tajkhorshid E, Baudry J, Luthey-Schulten Z (2004) Classical force field parameters for the heme prosthetic group of cytochrome c. *J Comput Chem* 25:1613-1622) and Bathelt et al. (Bathelt CM, Zurek J, Mulholland AJ, Harvey JN (2005) Electronic structure of compound I in human isoforms of cytochrome P450 from QM/MM modeling. *J Am Chem Soc* 127:12900-12908).

2. Testosterone topology file

```
* testosterone 6oh topology
MASS
        93 HAL1 1.008000 H ! alphatic proton
       94 HAL2 1.008000 H ! alphatic proton
95 HAL3 1.008000 H ! alphatic proton
96 HEL1 1.00800 H ! for alkene; RHC=CR
MASS
MASS
MASS
MASS 62 HOL 1.00800 H ! for H in hydroxyl group
MASS 65 CTL1 12.011000 C ! sp3 carbon with 1 H (-CH1-)
MASS 66 CTL2 12.011000 C ! carbon of methylene group (-CH2-)
MASS 67 CTL3 12.011000 C ! carbon of methyl group (-CH3)
MASS 97 CEL1 12.011000 C ! for alkene; RHC=CR
MASS 15 CEL2 12.011000 C ! for alkene; H2C=CR
MASS 69 OHL 15.99940 O ! hydroxyl oxygen
DECL -CA
DECL -C
DECL -0
DECL +CA
DEFAULT FIRST NONE LAST NONE
                                                           H20
H25 |
AUTO ANGLES DIHE
RESI TSTR 0.000000
                                                              \ H19-C18-H21
                                                            \ | НО
GROUP
                                                          H24-C12 | \
ATOM C3 C 0.51
                                    H23 / \ O3
\ / \ H17
H22-C11 C13----C17--\ /
H5 H6 H8 H9 | / C16-H16
\ / | / | H18 /
ATOM 02 0 -0.51
GROUP
ATOM C5 CEL1 -0.092
ATOM HE1 HEL1 0.088
ATOM C4 CEL1 -0.083

      ATOM
      C1
      CLEFF
      0.005
      ()
      1
      1
      110
      110

      ATOM
      C10
      CTL1
      0.087
      C1
      H7-C19
      C9-H10
      C14----C15--/

      GROUP
      H4
      /
      |
      /
      /
      |
      |

      ATOM
      C6
      CTL1
      -0.108
      /
      |
      /
      H26
      |
      H13

      ATOM
      H2
      HAL1
      0.054
      H3--C2
      C10
      H11-C8
      H12

      ATOM
      H1
      HAL1
      0.054
      |
      |
      |
      |

                                   C3 C5 H14-C7
GROUP
                                   02 \// \ /\
C4 C6
| '\
ATOM C14 CTL1 -0.204
ATOM H26 HAL1 0.121
ATOM C13 CTL1 0.083
GROUP
ATOM H10 HAL1 0.104
                                          HE1 H1 H2
ATOM C9 CTL1 -0.159
ATOM C11 CTL2 0.036
ATOM H22 HAL2 0.012
ATOM H23 HAL2 0.007
GROUP
ATOM H14 HAL2 0.103
ATOM H15 HAL2 0.091
ATOM C7 CTL2 -0.187
ATOM C8 CTL1 -0.190
ATOM C8
              CTL1 -0.190
ATOM H11 HAL1 0.183
GROUP
ATOM C17 CTL1 -0.008
ATOM H18 HAL1 0.180
ATOM 03 OHL -0.566
```

s4

ATOM	HO	HOL	0.	394	4				
GROUP)								
ATOM	C16	CTL2	-0.	108	8				
ATOM	H17	HAL2	0.	054	4				
ATOM	H16	HAL2	0.	054	4				
GROUP	1								
ATOM	C18	CTL3	-0.	018	8				
ATOM	н19	HAL3	0.	000	б				
ATOM	н20	HAL3	0.	000	б				
АТОМ	Н21	HAL3	0.	006	б				
GROUP	,				-				
ATOM	C2	CTT-2	-0	163	2				
	ц3	нат.2	0.	08-	1				
	иA	илт.2	0.	001	1				
	11-1	паца	0.	00.	T				
ATTOM	C 1		0	110	0				
ATOM			-0.	0 E 0	0				
ATOM	H5 HC		0.	053	9				
ATOM	но	HALZ	0.	055	9				
GROUP	~10	amt 0	~						
ATOM	C19	C.L.T.3	-0.	144	4				
ATOM	H'/	HAL3	0.	048	8				
ATOM	H8	HAL3	0.	048	8				
ATOM	Н9	HAL3	0.	048	8				
GROUP	1								
ATOM	C12	CTL2	0.	036	б				
ATOM	H24	HAL2	-0.	018	8				
ATOM	H25	HAL2	-0.	018	8				
GROUP	•								
ATOM	C15	CTL2	-0.	134	4				
ATOM	H12	HAL2	0.	06	7				
ATOM	H13	HAL2	0.	06	7				
BOND	С1 Н	5 (21	нб		C1	C2	C1	C10
BOND	С2 н	4 (22	нЗ		C2	C3		
BOND	C3 0	2 (23	C4					
BOND	С4 Н	E1 (24	C5					
BOND	C5 C	10 0	15	CG					
BOND	С6 Н	1 (76	C7		CG	н2		
BOND	С7 Н	15 (יי 7י	н14	4	C7	C8		
BOND	C8 H	11 (ng.	C 9	-	C8	C14		
BOND	С0 H	10 0	ng	C1(n	C9	C11		
BOND		10		CI	0	0	CII		
DOND	C10 C	1) 00 (111	<u>ц</u> о	2	C1 1	C1 2		
DOND		22 (04 (-11 -110		5				
BOND		24 (10 (-12 71 2	пZ:	כ ד				
BOND		10 (213	CI		CT3	CI4		
BOND	C14 C	15 (214	HZ	6	a1 F	a1.c		
BOND	С15 Н	12 (215	HI.	3	C15	C16		
BOND	C16 C	17 (216	Η1'	7	C16	H16		
BOND	С17 Н	18 (217	03					
BOND	C18 H	19 (218	H2(0	C18	Н21		
BOND	С19 Н	7 (219	Н8		C19	Н9	03	HO
IMPR	C19 C	9 C10	C5						
IMPR	C18 C	17 C13	3 C1	.4					
IMPR	C12 C	17 C13	3 C1	. 8					
IMPR	C17 C	14 C13	3 C1	. 8					
IMPR	C14 C	12 C13	3 C1	.8					
IMPR	03 C1	6 C17	7 0	213					
IMPR	C4 C	10 C5	Ce	5					
IMPR	H11 C	9 C8 (214						
IMPR	C15 C	13 C14	4 C8	3					
IMPR	C4 C	5 C3	ч н ч н	:1					
		4 CE	 1	0					
TWER		- CD	C1	- 0					

S5

IMPR C2 C4 C3 O2

PATCHING FIRS NONE LAST NONE

	-			_					
IC	02	C3	C4	C5	1.2344	121.6394	-179.2938	123.5448	1.3539
IC	02	C3	C4	HE1	1.2344	121.6394	-6.8737	115.8687	1.0586
ТC	C2	C3	C4	C5	1.5028	117,4983	-1,4695	123.5448	1.3539
тс	02	C 2	C2	C1	1 22//	120 8250	_150 0022	111 2406	1 5120
TC	02	C5 (1)		TT2	1 2244	120.0255		115 4452	1 0014
TC.	02	03	CZ	H3	1.2344	120.8259	-20.4986	115.4453	1.0014
IC	02	C3	C2	Н4	1.2344	120.8259	94.4287	101.3031	0.8804
IC	C2	C4	*C3	02	1.5010	117.40	177.80	121.70	1.2320
IC	C3	C5	*C4	HE1	1.5248	124.79	179.94	118.57	1.0971
TC	C4	C3	C2	Н3	1,4481	117,4983	161.6584	115,4453	1.0014
TC	C 3	C4	C5	C10	1 4481	123 5448	_7 0199	121 0877	1 5327
TC	C5 d3				1 4401	100 5440	170 4017	120.2007	1 4004
TC	C3	C4 ~5	C5	60	1.4401	123.5440	170.4017	120.3593	1.4904
TC	C4	C5	CIO	09	1.3539	121.98//	-132.304/	107.0264	1.5651
IC	C4	C5	C10	C19	1.3539	121.9877	106.2116	108.0069	1.5413
IC	C4	C5	C6	H1	1.3539	120.3593	6.8895	105.7211	0.9895
IC	C4	C5	CG	H2	1.3539	120.3593	-112.6151	107.0076	0.9644
IC	C4	C5	C6	C7	1.3539	120.3593	130,4844	111.7356	1.5434
TC	C10	C4	*05	CG	1 5532	116 94	-179 98	120 08	1 3679
TC	CE	010		011	1 5207	107 0264	170 12/6	112 1120	1 55/9
TC					1.5527	107.0204	170.1340	112.1120	1.0000
TC	C5	CIU		HIU	1.532/	107.0264	60.8136	108.3432	1.0828
IC	C5	C10	C9	C8	1.5327	107.0264	-52.7866	113.4307	1.5440
IC	C5	C10	C1	C2	1.5327	110.3179	44.8338	114.1190	1.5138
IC	C5	C10	C1	Н5	1.5327	110.3179	-74.5786	104.4856	1.0064
IC	C5	C10	C1	НG	1.5327	110.3179	170.4465	105.5003	0.9185
тС	C7	н2	*06	C5	1 5554	109 79	121 62	109 95	1 4930
TC	С5 С5	ц2	*06	сэ u1	1 5484	109 95	115 61	103 27	1 4814
TC	110	11Z CC	07	<u>70</u>	1.5404	100.70	£2 E	111 01	1 5204
TC	нZ al				0.9670	110 5410	-03.5	111.01	1.5364
TC	CI	CIU	CTA	H9	1.5394	110.5418	-61.5091	106.6646	0.9094
IC	C5	C10	C19	Н7	1.5327	108.0069	60.8179	110.7569	1.0385
IC	C5	C10	C19	Н8	1.5327	108.0069	-63.1393	109.5755	1.0585
IC	C8	C10	*C9	C11	1.5715	112.46	-127.75	113.03	1.5661
IC	C8	C10	*C9	H10	1.5715	112.46	115.20	106.10	1.1100
TC	C9	C5	*C10	C19	1.5860	110.19	-122.48	108.65	1.5717
TC	CQ	C5	*010	C1	1 5860	110 19	118 58	108 33	1 5792
TC	C F	06	07		1 4004	111 7256	E2 16E0	110 7606	1 5207
TC	C5				1.4904	111 7250	55.1050	110.7090	1.5507
TC	05	06	C7	HI4	1.4904	111./356	-69.41/6	112.7754	0.94/3
IC	C5	C6	C./	H15	1.4904	111.7356	168.4643	109.9922	1.0403
IC	C6	C8	*C7	H15	1.5248	112.71	-122.34	110.04	1.1056
IC	C6	C8	*C7	H14	1.5248	112.71	121.93	109.40	1.1103
IC	C10	C9	C8	C14	1.5860	112.46	-177.70	109.53	1.5530
IC	C14	C9	*C8	C7	1,5530	109.53	-121.29	109.65	1.5572
TC	C7	C 9	*08	н11	1 5572	109 65	-118 43	109 45	1 1058
TC	CQ	C 9	C1 /	C12	1 5715	100 53	57 10	115 16	1 5722
TC	C9 01 0	C0 20	* 01 /		1 5722	115 16	104 15	110 45	1 5755
TC	CI3	08	^CI4		1.5/33	115.10	124.15	118.45	1.5558
TC	C8	CI4	CI3	CT/	1.5198	113.3538	177.8566	99.1606	1.5528
IC	C13	C8	*C14	H26	1.5733	115.16	-116.19	106.00	1.1112
IC	Н26	C14	C13	C17	1.1456	102.1091	-65.8025	99.1606	1.5528
IC	Н2б	C14	C13	C18	1.1456	102.1091	179.1162	113.1591	1.5232
IC	Н2б	C14	C13	C12	1.1456	102.1091	54.2176	108.0403	1.5308
IC	C15	C14	C13	C17	1,5392	104.2003	46.7414	99.1606	1.5528
TC	C17	C14	*013	C18	1 5861	100 15	-117 12	112 56	1 5646
TC	C1 Q	C1 /	*012	C10	1 5646	112 56	-121 22	106 26	1 5620
тС т ~	CT0				1 5040	115 16	170 17	100.20	1 5020
тC	00	C14	CT3		1.5530	01.CTT	1/0.1/	100.15	1000.1
τC	CT3	C14	C8	C9	1.5431	113.3538	58.2605	109.1035	1.5440
IC	Н2б	C14	C8	H12	1.1456	108.3693	-173.4467	107.8725	0.9743
IC	C13	C14	C15	C16	1.5431	104.2003	-32.9379	104.1198	1.5330
IC	Н2б	C14	C15	H12	1.1456	108.1766	-161.7415	110.2486	1.0435
тс	н26	C14	C15	н13	1 1456	108 1766	-29 6121	106 7957	1 0170
								/	

SG

IC	C16	C14	*C15	H12	1.5750	103.6	5	119.22	110.78	1.1042
IC	H12	C14	*C15	H13	1.1042	110.7	8	119.69	112.42	1.1025
IC	C14	C13	C17	03	1.5431	99.16	06	-161.5404	114.9010	1.4228
IC	C14	C13	C17	H18	1.5431	99.16	06	73.5699) 113.4379	9 1.0862
IC	C16	C13	*C17	H18	1.5879	103.3	0	113.79	106.39	1.1096
IC	C16	H18	*C17	C13	1.5554	109.7	9	121.62	113.95	1.5530
IC	C13	H18	*C17	03	1.5484	113.9	5	128.61	107.27	1.4214
IC	C12	C13	C18	H21	1.5308	112.2	326	-176.8153	3 110.6633	3 1.0498
IC	C14	C13	C18	H19	1.5431	. 113.1	591	-63.6430	110.5362	2 0.8845
IC	C14	C13	C18	Н20	1.5431	. 113.1	591	171.4897	114.1382	2 0.9941
IC	Н19	C13	*C18	Н20	1.1033	110.5	5	-119.68	111.78	1.1028
IC	H19	C13	*C18	H21	1.1033	110.5	5	119.61	112.19	1.1018
IC	H7	C10	*C19	Н8	1.1021	. 111.4	5	119.42	110.93	1.1019
IC	H7	C10	*C19	Н9	1.1021	. 111.4	5	-119.79	111.35	1.1031
IC	C14	C13	C12	C11	1.5431	108.04	403	57.3169	110.8625	5 1.5401
IC	C14	C13	C12	H24	1.5431	108.04	403	-64.1758	3 105.2277	7 1.0268
IC	C14	C13	C12	H25	1.5431	108.04	403	-178.7801	111.4882	2 1.0753
IC	C11	C13	*C12	H24	1.5634	111.5	8	-120.79	108.67	1.1085
IC	C11	C13	*C12	H25	1.5634	111.5	8	121.62	111.81	1.1024
IC	C10	C9	C11	C12	1.5651	. 112.1	120	179.1474	ł 113.1929	9 1.5401
IC	C10	C9	C11	H22	1.5651	. 112.1	120	58.2458	3 107.5491	L 1.0142
IC	C10	C9	C11	H23	1.5651	. 112.1	120	-62.4416	5 108.2043	3 1.1186
IC	C12	C9	*C11	. н22	1.5634	114.0	1	-121.93	109.80	1.1027
IC	H22	C9	*C11	. н23	1.1027	109.8	0	-116.32	109.56	1.1045
IC	C10	C9	C8	C14	1.5651	. 113.4	307	-179.3439	0 109.1035	5 1.5198
IC	C13	C12	C11	C9	1.5308	110.8	625	-53.1491	113.1929	9 1.5548
IC	C6	C7	C8	C14	1.5434	110.7	696	-177.4380) 111.0609	9 1.5198
IC	C16	C17	03	HO	1.5589	109.4	807	156.5484	110.1648	3 0.7841
IC	H18	C17	03	HO	1.1017	103.2	7	179.88	109.63	0.9872
IC	C13	C17	C16	C15	1.5528	103.4	469	23.2683	3 106.5419	9 1.5330
IC	C13	C17	C16	H17	1.5528	103.4	469	-97.5247	110.2519	9 1.0376
IC	C13	C17	C16	H16	1.5528	103.4	469	141.5424	l 99.9022	2 0.9963
IC	C15	C17	*C16	H17	1.5750	107.1	2	-120.82	110.34	1.1040
IC	C15	C17	*C16	H16	1.5750) 107.12	2	121.24	110.92	1.1025
IC	C14	C15	C16	C17	1.5392	104.1	198	5.6394	106.5419	9 1.5589
IC	C3	C2	C1	C10	1.5028	111.3	406	-53.5258	3 114.1190	1.5394
IC	C1	C3 ;	*C2	H4	1.5582	110.59		121.34	109.37	1.1037
IC	C1	C3 ;	*C2	Н3	1.5582	110.59	-	121.75	109.32	1.1074
IC	C1	H4 *(22	C3	1.5130	107.90	-1	17.11	101.30	1.5040
IC	C3	H4 *(22	Н3	1.5040	101.30	-1	.21.00	107.00	1.0020
IC	C2	C10 ;	*C1	Н5	1.5582	114.55		122.79	109.37	1.1042
IC	Н5	C10 *(21	Нб	1.1042	109.37	1	16.06	108.25	1.1063
ENI	7									

3. Ferric heme QM/MM optimized coordinates

С	-6.112457 -3.493490 -2.649526
0	-5.951633 -3.366412 -3.893706
N	-5.099632 -3.397687 -1.772787
н	-5.279463 -3.454247 -0.766625
С	-3.712096 -3.183504 -2.218481
с н	-3 639012 -2 204990 -2 697933
C	-2 788894 -3 252839 -1 000446
U U	-2.7060094 - 5.252059 - 1.000440
п 	-2.190202 -4.201307 -0.595139
H	-3.112452 -2.544623 -0.236693
C	-3.274285 -4.288512 -3.196361
0	-3.177906 -5.465934 -2.804069
S	-0.998201 -2.870267 -1.482340
FE	-1.043614 -0.464155 -1.562068
N	-2.826292 0.099093 -0.603055
N	-0.095528 -0.148154 0.289418
N	0.784053 -0.212449 -2.480374
N	-1.980856 0.006904 -3.373392
С	-4.064015 0.317649 -1.212722
C	-5 089728 0 461571 -0 194581
C	
d	-4.402040 0.334049 1.020939
C	-0.709523 -0.200725 1.539322
C	0.284963 -0.400252 2.579693
C	1.518532 -0.469940 1.947467
С	1.263522 -0.315858 0.513756
С	2.019098 -0.362468 -1.859562
С	3.061998 -0.471763 -2.860851
С	2.450096 -0.344928 -4.099862
С	1.015057 -0.198793 -3.850946
С	-1.352581 0.065315 -4.608154
С	-2.337209 0.368824 -5.639431
С	-3.561695 0.508344 -5.012567
C	-3 321773 0 297410 -3 590528
C	-4 280163 0 403542 -2 585164
с u	-5 296692 0 602232 -2 904307
п С	
	-2.080197 -0.088398 1.750288
H	-2.423970 -0.093507 2.778533
C	2.230060 -0.4052/9 -0.482455
Н	3.253691 -0.548082 -0.158103
С	0.018617 -0.093780 -4.819467
Н	0.351895 -0.105322 -5.848632
С	-5.076111 0.523342 2.380214
Н	-4.829051 -0.299083 3.058293
Н	-6.166422 0.586638 2.317695
Н	-4.718109 1.435231 2.871950
С	-6.554223 0.675660 -0.450132
н	-7.141177 0.177156 0.330813
н	-6 860674 0 193555 -1 383862
C	-6 985452 2 155689 -0 511722
с u	-6 202020 2 725207 -1 147060
п тт	
п	
C o	-0.304023 2.3401/6 -1.082/93
0	-9.012927 1.338730 -1.558077
0	-8.856203 3.553046 -1.154562
C	-0.001334 -0.503311 4.046255
Н	-0.026609 -1.548185 4.382718
Н	-0.969240 -0.066433 4.308101

H	0.773152 0.009707 4.628297
С	2.847080 -0.654678 2.517692
Н	3.677590 -0.304932 1.909799
С	3.145377 -1.216555 3.704641
Н	2.400476 -1.629790 4.374618
Н	4.176737 -1.299353 4.030180
С	4.517145 -0.678668 -2.562797
Н	4.688266 -1.642860 -2.067174
Н	4.913165 0.094559 -1.891786
Н	5.128564 -0.659841 -3.467893
С	3.139519 -0.391469 -5.389310
Н	4.010113 -1.045001 -5.417070
С	2.841287 0.297509 -6.504518
Н	3.432431 0.186413 -7.407164
Н	2.032286 1.020198 -6.547252
С	-2.038485 0.603199 -7.088937
Н	-1.134499 0.081002 -7.419513
Н	-1.892978 1.673053 -7.292820
Н	-2.865828 0.262858 -7.720531
С	-4.895734 0.803373 -5.655848
Н	-4.754831 1.480859 -6.505720
Н	-5.548177 1.343017 -4.959930
С	-5.613760 -0.482208 -6.127320
Н	-5.710498 -1.184709 -5.285223
Н	-5.000526 -1.002420 -6.874550
С	-7.017624 -0.325605 -6.740465
0	-7.474581 -1.361054 -7.335424
0	-7.665291 0.788043 -6.587941
Ν	-2.910022 -3.867727 -4.456900
Н	-3.116625 -2.919633 -4.738797
h	-7.082439 -3.757603 -2.228284
h	-2.647003 -4.476269 -5.205545

4. Additional figures

Figure S1. Cα RMSD plots of CYP3A4 in all MD simulations along time compared to their initial PDB structures. A) 3A4a, 3A4b, 3A4b_DIA, 3A4b_TST, 3A4b_DIA_CPR, 3A4b_TST_CPR are colored black, dark green, pink, green, red and blue respectively. B) Cα RMSD plots of CPR in the two CPR containing MD simulations along time compared to their initial PDB structures

Figure S2. RMSF plots for CYP3A4 residues in all MD simulations. A) RMSF plots in unbound 3A4b (green), diazepam bound 3A4b_DIA (pink) and diazepam plus CPR bound 3A4b_DIA_CPR (red) simulations. B) RMSF plots in unbound 3A4b (dark green), testosterone bound 3A4b_TST (green) and testosterone plus CPR bound 3A4b_TST_CPR (blue) simulations.

Figure S3. Number of water molecules penetrating though specific substrate access channels in the first 10ns of the unbound MD simulations. The access channels nomenclature is according ref. 4.

Explanation of the substrate channels types:

Below, the substrate access channels nomenclature follows Cojocaru et al. (Ref. 4): In the 3A4a simulation, we observed water molecules passing through channel 2b (located between the F' and G' helices, β 1 sheet and the BC loop, Fig. 2 in the manuscript) and the solvent channel denoted S. This observation is supported by the CYP102A1 (CYP_{BM3}) substrate free structure in which there are between 17 and 21 water molecules along the 2b and S channels (Ref. 10). In the 3A4b simulation, we observed water molecules passing through channels 2b and S as well as through channel 2a (located between the β 1 sheet and F' helix) and channel 2e that passes through the BC loop.

Figure S4. Distance between the heme 7-propionates and R375 all simulations. 3A4a, 3A4b, 3A4b_DIA, 3A4b_TST, 3A4b_DIA_CPR, 3A4b_TST_CPR plots are colored black, dark green, pink, green, red and blue respectively.

Figure S5. Distance between the heme 7-propionates and R105 (blue and green), R130 (red), R375 (cyan) and R440 (purple) along the following MD simulations: A) 3A4a; B) 3A4b; C) 3A4b_DIA; D) 3A4b_TST; E) 3A4b_DIA_CPR and F) 3A4b_TST_CPR.

Figure S6. χ side chain torsion angles of R375.

Figure S7. χ side chain torsion angles of R375 along the testosterone (green) and testosterone plus CPR (blue) containing MD simulations (A) χ_2 (B) χ_3 (C) χ_4 .

Figure S8. χ side chain torsion angles of R375 along the diazepam (pink) and diazepam plus CPR (red) containing MD simulations (A) χ_2 (B) χ_3 (C) χ_4 .

Figure S9. χ side chain torsion angles of R375 along the substrate free MD simulations. CYP3A4 conformers are colored black and green for the 3A4a and 3A4b conformers. (A) χ_2 (B) χ_3 (C) χ_4 .

Figure S10. Propionates dihedral angles along MD simulations. A) Propionate A (7-propionate) dihedral angle along the diazepam containing MD simulations with CPR (red) and without CPR (pink). B) Propionate D (6-propionate) dihedral angle along the diazepam containing MD simulations with CPR (red) and without CPR (pink). C) Propionate A (7-propionate) dihedral angle along the testosterone containing MD simulations with CPR (blue) and without CPR (green). D) Propionate D (6-propionate) dihedral angle along the testosterone containing MD simulations with CPR (blue) and without CPR (green). E) Propionate A (7-propionate) dihedral angle along the substrate free MD simulations. F) Propionate D (6-propionate) dihedral angle along the substrate free MD simulations.

Figure S11. A) The surface of the aqueduct as calculated by MolAxis. Green spheres indicate channel radius under 2.7Å. The heme and R375 are represented as VDW spheres. The protein is colored orange. B) Explicit representation of the aqueduct with the ordered water molecules shown outside the active site. The heme, R375 and water molecules are represented by VDW spheres. Both figures share the same view.

Figure S12. Aqueduct bottleneck radii along the unbound simulations 3A4a (black) and 3A4b (green).

22	32	42	52	62		
MALYGT <mark>H</mark> SHG	LFKKL <mark>GI</mark> PGP	TPLP <mark>FL</mark> GNIL	SY <mark>H</mark> KG <mark>FCM</mark> FD	MECHKKYGKV		
72	82	92	102	112		
WGFYDGQQPV	L <mark>AITD</mark> PDM <mark>IK</mark>	TVLVKECYS/	F TNRR <mark>P</mark> FGPV	GFMKSAI <mark>SI</mark> A		
122	132	142	152	162		
EDEEWKRLRS	L <mark>LSPTFT</mark> SGK	LKEMVPIIAQ	YGD <mark>VL</mark> VRNLR	REAETGKPVT		
172	182	192	202	212		
L <mark>KD</mark> VFGAYSM	DVI <mark>TSTS</mark> FG <mark>V</mark>	NIDSLNNPQD	PFV <mark>E</mark> NTKKLL	RF <mark>DFL</mark> DPFFL		
222	232	242	252	262		
SITVFPFLIP	ILE <mark>V</mark> LNIC <mark>V</mark> F	P <mark>REVTNF</mark> LRK	SV <mark>KR</mark> MKES <mark>R</mark> L	<mark>E</mark> DTQKH <mark>R</mark> VDF		
272	282	292	302	312		
L <mark>Q</mark> L <mark>M</mark> IDSQNS	<mark>kete</mark> shkals	D <mark>le</mark> lv <mark>aq</mark> sii	FIF <mark>AGYETT</mark> S	SVLSF <mark>I</mark> MYEL		
322	332	342	352	362		
ATHPDV <mark>QQKL</mark>	Q <mark>E</mark> EI <mark>DA</mark> VLPN	KA <mark>PPTY</mark> D <mark>T</mark> VL	QMEYLDMVVN	ETLRLFPIA <mark>M</mark>		
372	382	392	402	412		
RLERYCKKDV	EING <mark>MF</mark> IPK <mark>G</mark>	V <mark>VVM</mark> IPS <mark>Y</mark> AL	HRDPKYWTEP	EKFLPERFSK		
422	432	442	452	462		
KNKDNIDPYI	Y <mark>T</mark> PFG <mark>S</mark> GPRN	CI GMRFALMN	MKLALIRVLQ	NFSFKPCKET		
472	482	492	502			
QIPLK <mark>LSL</mark> GG	LLQPEKPV <mark>V</mark> L	KVES <mark>RDGTV</mark> S	<mark>G</mark> AHHHH			
1 2 3 4	4 5 6 7	8 9				
Variable Average Conserved						

Figure S13. CYP3A4 sequence conservation calculated by ConSeq. The amino acids are colored according to the conservation scale at the bottom of the figure. Aqueduct residues are in black squares.

		ННННН Н		нннннннннн	S SSS
lakd	272>	QELIQRP		-ERIPAACEELLRRFSL	VADGRIL
		ннннннннн	НННН	нннннннннннн	SSSSS
lcpt	277>	GGAIIGLSRNP-EQI	LALAKSD	-PALIPRLVDEAVRWTA	PVKSFM <mark>R</mark> TA
		нннннннннн	НННН	нннннннннн	SSSSS
leal	280>	AAVIDELDELYGDGF	RSVSFHALRQ	IPQLENVLKETLRLHPP	LII-LMRVA
		ннннн		ннннннннн	SS SS
1f4t	232>	QRIREEN		LYLKAIEEALRYSPP	VMRTV- <mark>R</mark> K-
		ннннн н		ННННННННННН	SS SSS
1jip	265>	ALVRRDP		-SALPNAVEEILRYIAP	PETTT- <mark>R</mark> FA
		нннннннн	нннн	ннннннннннн	SS
1nr6	318>	ARVQEEIERVIGRHF	RSPCMQDRSRI	MPYTDAVIHEIQRFIDL	lptnlp <mark>H</mark> av
		ннннн		ннннннннн	SSSSSS
1odo	266>	ALVRKGE		-VTWADVVEETLRHEPA	VKHLPL <mark>R</mark> YA
		нннннннн	нннннн	ннннннннннн	SS
1r90	321>	AKVQEEIERVIGRNF	RSPCMQDRSH	MPYTDAVVHEVQRYIDL	lptslp <mark>H</mark> av
		нннннннн	нннннн	ннннннннннн	SS
1suo	322>	ERVQKEIEQVIGSHF	RPPALDDRAK	MPYTDAVIHEIQRLGDL	IPFGVP <mark>H</mark> TV
		нннннннн	ннннн	ннннннннн	SSSS
ltqn	329>	QKLQEEIDAVLPNKA	APPTYDTVLQ	MEYLDMVVNETLRLFPI	AMR-LERVC

Figure S14. Multiple sequence alignment based on a multiple structure alignment of several P450s including: CYP_{cam} (PDB code 1akd), CYP_{terp} (PDB code 1cpt), CYP51 (PDB code 1ea1), CYP119 (PDB code 1f4t), CYP_{eryF} (PDB code 1jip), CYP2C5 (PDB code 1nr6), CYP154a1 (PDB code 1odo), CYP2C9 (PDB code 1r90), CYP2B4 (PDB code 1suo), CY3A4 (PDB code 1tqn). Secondary structure elements are listed as follows: H- α -helix, S- β strand. The R375 position is highlighted and colored red.

Figure S15. A) Number of active site water molecules along MD all simulations. 3A4a, 3A4b, 3A4b_DIA, 3A4b_TST, 3A4b_DIA_CPR, 3A4b_TST_CPR are colored black, dark green, pink, green, red and blue respectively. B) Number of hydrogen bonds between water molecules inside the CYP3A4 active site along all MD simulations. 3A4a, 3A4b, 3A4b_DIA, 3A4b_TST, 3A4b_DIA_CPR, 3A4b_TST_CPR are colored black, dark green, pink, green, red and blue respectively.

Explanation to how active site water molecules were detected and hydrogen bonds were calculated:

The space of the active site was defined as follows: We identified all channels emanating from the active site by MolAxis, and the active site boundaries were defined as the bottlenecks of all the channels. Then, we detected water molecules located inside all the channels spheres and these were assigned as active site water molecules. We considered a hydrogen bond between two water molecules if they meet two criteria: An O---O length shorter than 3.1 Å and an O-H---O angle greater than 146°, according to Khan et al. (Ref. 41).

MD step (ns) Figure S16. Hydrogen bond distance between the S437 carbonyl group and the 7-propionate in the 3A4b_DIA_CPR (red) and 3A4b_TST_CPR (blue) MDs.

Table S1. CYP3A4-CPR key interacting residues in descending order according to number of close contacts.

3A4b_DIA_CPR	3A4b_TST_CPR
LYS424_TRP574	LYS424_TRP574
PRO135_ASP499	SER131_ARG498
TYR99_THR515	ARG446_FMN631
ARG446_THR496	TYR99_THR515
ARG130_GLU494	ARG130_ARG498
LYS421_ASN573	PRO429_FMN631
SER139_TYR613	ASN441_MET490
THR138_ASP499	PRO135_ARG498
PRO439_TYR486	VAL95_ASN489
SER131_VAL513	LYS143_PHE609
ILE443_GLU494	ARG446_THR492
SER139_PHE609	GLU283_MET505
THR138_THR496	PRO135_ASP499
TYR99_LEU516	LEU351_ASN573
PRO439_ASN543	ARG130_GLU494
ASP425_TRP574	ASP425_THR576
SER134_ARG498	LYS96_ASP542
SER134_GLU494	LYS91_ASP542
SER139_THR496	MET445_FMN631
ARG446_THR492	GLY438_MET490
ILE443_GLY495	ARG446_ASP571
LYS96_ASP542	THR284_MET505
LEU351_ASP607	SER134_ARG498
ASN441_GLY491	PRO439_SER488
GLY438_ASN489	THR138_THR492
LYS424_ASN573	SER134_GLY495
ASP425_ASN537	LYS96_ASN543
PRO429_FMN631	ASN441_GLY491
SER437_ASN489	LYS424_ALA575
PRO429_ASN489	VAL95_ASN543
GLU283_MET505	LEU351_SER606
VAL95_ASP542	PRO135_GLY495
MET445_MET490	THR138_THR496
ARG446_SER606	GLY140_PHE609
SER134_ASP499	PRO439_ASN543
LYS143_GLU610	SER437_MET490
PRO429_MET490	PRO429_MET490
ASN441_MET490	GLU285_PRO511
ASP425_THR576	TYR99_TYR486
PHE435_MET490	SER134_GLU494
VAL95_ASN543	TYR430_ASN537
VAL95_ASN489	ASP428_ASN537
LYS127_THR515	LYS127_THR515
SER286_MET505	GLU285_ALA510

P450	PDB code	6-propionate	7-propionate
CYP108 (terp)	1CPT	H110, R114, H375	R319
CYP101 (cam)	1AKD	R112, H355	R299
Cyp107A1 (ERYF)	1JIP	H98, R102, H349	R293
CYP102 (BM-3)	1FAG	K69, H100, R398	K69
CYP2B4	1SUO	R125, R434	R98, H369
CYP2C9	1R9O	R124, R433	R97, H368
CYP2C5	1NR6	R124, R430	R97, H365
CYP3A4	1TQN	R105, R130, R440	R105, R375
CYP3A4	1TQN	R105, R130, R440	R105, R375

Table S2: positive residues that salt bridge the propionates moieties of the heme in different species.

5. Calculated *PKa* values (titratable groups)

Amino acid	Chargo
UIC 0000	
HIS+_0028_	0
HIS+_0030_	0
LYS+_0034_	1
LYS+_0035_	1
TYR0053_	0
HIS+_0054_	0
LYS+_0055_	1
CYS0058_	0
ASP0061_	-1
GLU0063_	-1
CYS0064_	0
HIS+_0065_	0
LYS+ 0066	1
LYS+ 0067	1
TYR- 0068	0
LYS+ 0070	1
TYR- 0075	0
ASP- 0076	-1
ASP- 0086	1
ASP0000	-1
ASF0000	-1
LYS+_0091_	1
	1
GLU0097	-1
CYS0098_	0
IYR0099_	0
ARG+_0105_	1
ARG+_0106_	1
LYS+_0115_	1
GLU0122_	-1
ASP0123_	-1
GLU0124_	-1
GLU0125_	-1
LYS+_0127_	1
ARG+_0128_	1
ARG+_0130_	1
LYS+_0141_	1
LYS+ 0143	1
 GLU- 0144	-1
TYR- 0152	0
ASP- 0154	-1
ARG+ 0158	1
ARG+ 0161	1
ARG+ 0162	1
	1
	- 1
	- 1 •
LIS+ 0108	1 11

1	1 1
LYS+_0173_	1
ASP0174_	-1
TYR0179_	0
ASP0182_	-1
ASP0194_	-1
ASP0201_	-1
GLU0205_	-1
LYS+_0208_	1
LYS+_0209_	1
ARG+_0212_	1
ASP0214_	-1
ASP0217_	-1
GLU0234_	-1
CYS0239_	0
ARG+_0243_	1
GLU0244_	-1
ARG+_0250_	1
	1
LYS+_0254	1
ARG+ 0255	1
LYS+ 0257	1
GLU- 0258	-1
ARG+ 0260	1
 GLU- 0262	-1
ASP- 0263	-1
LYS+ 0266	1
HIS+ 0267	0
ARG+ 0268	1
ASP- 0270	-1
ASP- 0277	-1
LYS+ 0282	1
GLU- 0283	-1
GLU- 0285	-1
HIS+ 0287	0
LYS+ 0288	1
ASP- 0292	-1
GLU- 0294	-1
TYR- 0307	0
GLU- 0308	-1
TYR- 0319	0
GLU- 0320	-1
HIS+ 0324	0
ASP- 0326	-1
LYS+ 0330	1
GLU- 0333	-1
GLU- 0334	
ASP- 0336	
I YS+ 0342	1
TYR- 0347	0
ASP. 0349	1
	- 1
GLU- 0354	_1

TYR0355_	0
ASP0357_	-1
GLU0362_	-1
ARG+_0365_	1
ARG+_0372_	1
GLU0374_	-1
ARG+_0375_	1
CYS0377_	0
LYS+_0378_	1
LYS+_0379_	1
ASP0380_	-1
GLU0382_	-1
LYS+_0390_	1
TYR- 0399	0
 HIS+ 0402	0
ARG+ 0403	1
ASP- 0404	-1
LYS+ 0406	1
TYR- 0407	0
GLU- 0410	-1
GLU- 0412	-1
LYS+ 0413	1
GLU- 0417	-1
ARG+ 0418	1
1 YS+ 0421	1
LYS+ 0422	1
LTGT_0422_ LYS+ 0424	1
ASP- 0425	-1
ASP- 0428	1
TVR- 0430	-1
TVP- 0430_	0
APG+ 0432_	1
$\frac{10440}{2}$	1
ABC + 0442_	1
ANGT_0440_	1
13+0433	1
ARG+_0456_	1
$215+_0466_$	1
LVS: 0400_	0
L15+_0469_	1
GLU0470_	-1
LYS+_0476_	1
GLU0486_	-1
$LYS+_0487$	1
LYS+_0492_	1
GLU0494	-1
AKG+_0496_	1
ASP0497	-1
CTR0499	-1
PAA0500_	-1
PDD0500_	-1

We used DelPhi (Rocchia W, Alexov E, Honig B (2001) Extending the applicability of the non-linear Poisson– Boltzmann equation: multiple dielectric constants and multivalent ions. *J Phys Chem B* 105:6507-6514) as a Poisson-Boltzmann solver with a dielectric constant of 4