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Supporting Material

1 Discrete stochastic cellular Potts model (CPM)

Stochastic discrete models are used in a variety of problems dealing with biological com-
plexity. One motivation for this approach is the enormous range of length scales of typical
biological phenomena. Treating cells as simplified interacting agents, one can simulate the
interactions of tens of thousands to millions of cells and still have within reach the smaller-
scale structures of tissues and organs that would be ignored in continuum (e.g., partial
differential equation) approaches. At the same time, discrete stochastic models can be made
sophisticated enough to reproduce almost all commonly observed types of cell behavior
(2, 3, 5, 7, 8, 13, 14).

In the CPM each cell consists of many lattice sites (pixels). Distribution of multidi-
mensional indices associated with lattice cites determines current system configuration. The
effective energy of the system mixes true energies, like cell-cell and cell-injury adhesions, and
terms that mimic energies, e.g., the response of a cell to a blood flow and area or volume
constraint

E = EAdhesion + EArea + EChemical. (1.1)

Given an effective energy one cell motion is calculated using Metropolis dynamics algorithm
based on the Monte-Carlo Boltzmann acceptance rule (11). Namely, if a proposed change in
lattice configuration (i.e. a change of the index associated with a pixel) changes the effective
energy by ∆E, the change is accepted with probability:

P (∆E) =

{
1, ∆E ≤ 0

e−∆E
T

∆E > 0,
(1.2)

where T , defined in units of energy, determines effective cell membrane fluctuation amplitude
and is estimated based on the value of ∆E, to be between 0.2 ≤ ∆E/T ≤ 2.0 (1). The
pattern of pixels with the same index evolves (and cell moves) to minimize the total effective
energy.

In the blood clot model, inactivated platelets and blood cells are introduced from the
inlet on the left side at a specified rate and move to the right. When cells reach the right
side of the simulation domain, they are removed from the system. The ”no-flux” boundary
conditions are imposed on both upper and lower boundaries so that cells would not move
outside of the domain.

On each CPM iteration step a lattice site (pixel) is randomly chosen and change of its
index (state) is attempted. System energy change is calculated and the probability of its
acceptance is determined. Generator of random numbers is used to determine which index
to implement. This is followed by adjustment of the lattice site index and update of the
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corresponding cell properties (cell size, cell boundary position and cell type). For a given
CPM lattice of the size (m × n), one Monte Carlo Step (MCS ) of a simulation consists of
(m × n) attempts at index changes of randomly chosen lattice cites. When an inactivated
platelet reaches the site of the injury or region with IIa concentration higher than the set
threshold value (1nM), it changes its type to “activated” and starts coagulation process on
its surface.

We further extended the CPM sub-model to take the volume shrinkage of activated
platelets into consideration. In this extension, a platelet has two prescribed target volumes
ν1 and ν2 depending on its biological status. Here ν1 is the volume of a platelet at the
resting state; and ν2 is the target volume of activated platelets flatten out to form more
spherical structures with developing filipodia, which is about 20% of ν1. (Remark: In real
experiments, the volume of a platelet shrinks to approximately 10% of its original one. We
use 20% only for the stability of the algorithm. In CPM sub-model, if the number of pixels
of a cell is too few, the cell will be deleted.) This process of volume shrinking takes about
three minutes. We assume a linear relation between ν1 and ν2. Therefore the intermediate
volume ν(t) is prescribed by

ν(t) =

{
ν1(1.0− t

180.0

(
4
5

)
), t ≤ 180

0.2ν1 t > 180,
(1.3)

where t is the time that a platelet being activated.
Coupling time scales of continuous models and CPM: The CPM is an extension of
the Potts model which does not explicitly indicate its physical time scale. The time scale
is imposed on the CPM by matching the simulated dynamics with the real physical one.
The time scale between the CPM and the continuous model is established by matching the
simulated platelet velocity with the blood flow velocity calculated from the Navier-Stokes
equation. During the parameter calibration process, we gradually adjust the flow energy
constant in the CPM until the platelet velocity matches that of the blood flow. Table 1 lists
typical PM parameter values used for simulations described in the paper.

2 Image analysis of venous thrombi formation

A connection between biological experiments and model simulations has been established by
using newly developed image segmentation, reconstruction, and analysis algorithms (9, 10).
A venous blood thrombus (clot) is generally composed of platelets and fibrin/fibrinogen. It
may also incorporate other blood cells (leukocytes and red blood cells) during its develop-
ment. In a 3-dimensional microscopic image, the clot is seen as a cluster of voxels with
certain fluorescent signals. Specifically, in Fogure 1 blue signal represents plasma (dextran),
green is for fibrinogen/fibrin, red is for platelets, and black is for everything else (i.e., ex-
cluding the three fluorescently tagged components). Therefore, the image processing task is
to identify and analyze the structures (or shapes) formed by red and green voxels plus the
surrounding “black” voxels (for other blood cells) in 3D images.

The information for each voxel actually consists of three values (called channels), repre-
senting the levels of red, green, and blue (each from 0 to 255). Hence, there are possibly
many different combinations of channel values for each voxel. In the 3D clot images fibrin
and platelets (or red and green voxels) cluster together to form clots. While there are clusters
of red and green points, the 3D space is also filled with many other red and green points.

2



Table 1: Parameter values for simulations of the thrombus development.

Flow Parameters
Finite difference grid 210×60
Inlet Pressure 1 bar
Plasma Viscosity 0.015
Inlet Velocity u (500, 0) µm/s
Domain Size 280µm×80µm
Simulation time 30 sec.

CPM parameters
CPM grid 1050×300
Fluctuation temperature T 10
Adhesion const. J
blood-platelets 18.0
quiescent platelet-quiescent platelets 20.0
activated platelet-activated platelets 8.0
activated platelet-injury 2.0
activated platelet-vessel wall 18.0
Target volume vtarget platelet 30
Target volume vtarget blood cell 100
Volume const. λ 2.0
Volume const. λ′ 0.0
Fluid const. Ke1 25.0
Fluid const. Ke2 0.2
Threshold 1 0.4
Threshold 2 1.0
Fibrin production rate. κ 1.0
Time-steps 20 CPM steps per NS

step, 1050×300 trials
per CPM steps

Coagulation reaction parameters Parameters are the
same as in (17, 18, 19)
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Thus, the image analysis problem is to first identify the clusters (or galaxies) of discrete red
or green points or voxels while at the same time ignore the “isolated” red or green points (or
isolated stars). Then obtained clusters can be used for reconstructing surfaces and calculat-
ing volumes of the clots. Therefore, a clot is defined as a maximal set of density-connected
voxels and can be obtained using density-based clustering (DBC) algorithm (4).

The clot identification algorithm consists of the following main steps.

(1) Image intensification: modify (i.e., increase or decrease) the channel values of each
voxel based on a functional mapping, such that those voxels with high red or green
channel values have a bigger chance of being classified as red or green voxels, and those
voxels with low red or green channel values have a higher chance to be ignored.

(2) Threshold determination: apply Otsu’s method (12) to compute threshold value for
each of the three channels for every 2D image slice in the 3D image. The idea of
Otsu’s method is to search for the threshold that minimizes the in-class variance and
maximizes the between-class variance.

(3) Voxel classification: classify each voxel v of every 2D image slice as follows. Find the
maximum value among the three channels of v (say, this value is red); if this red value
is above the threshold of that slice for red, then v is classified as a red voxel; otherwise,
v is a black voxel.

(4) Density-based clustering: determine clusters of maximal density-connected red or green
voxels in the 3D image.

(5) Blood cell inclusion: add the surrounding black voxels (i.e., other blood cells) of each
cluster to the image of the clot.

Estimation of porosity. Our image identification algorithms show that volume of a typical
blood clot resulting from vessel injury in a wild-type mice increases rapidly at an earlier
time and then shrinks dramatically soon after reaching its peak. Then the size of the blood
clot becomes relatively stable and does not change much. To monitor the growth of a
clot, we produced a complete sequence of 3D images for a sequence of time points with an
interval between two consecutive points being forty seconds. We focus on three typical time
points in experiments corresponding to clot starting to grow, its volume peaking, and its
size stabilizing. In the clot image sequence, these three time points correspond to the first,
second, and sixth 3D images labeled as T1, T2 and T3 in Table 2.

Without further differentiating components of a clot, for each time point, we produce
from the 3D image a list of 2D binary image slices each represented by a 3D matrix. The 3D
binary image separates all voxels into two classes: clot and non-clot. Each cell in the matrix
corresponds to one voxel in the binary image, where 1 means that the voxel belongs to the
clot, and 0 otherwise. We use a percentage indicating the proportion of void (i.e., non-clot)
space in a rectangular cuboid region which is entirely contained in the clot to measure the
porosity of the clot. This percentage represents the ratio of the total volume of the void
space to the total volume of the region (including both clot and void voxels). To ensure
the robustness of the percentage value, after we select the initial position of the ”box” (i.e.,
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Table 2: Clot porosity at three different time points

Sample no. T1 Porosity (%) T2 Porosity (%) T6 Porosity (%)
1 59325 20.90 63333 15.56 69012 7.98
2 57746 23.00 63794 14.94 69581 7.23
3 58120 22.51 64041 14.61 68837 8.22
4 58901 21.47 64183 14.42 68540 8.61
5 58311 22.25 64370 14.17 69904 6.79
6 58019 22.64 64494 14.01 69331 7.56
7 57908 22.79 64450 14.07 68799 8.27
8 57899 22.80 64323 14.24 68736 8.35
9 58062 22.58 64139 14.48 69012 7.98
10 57803 22.93 63916 14.78 69538 7.28

cuboid region), we gradually move the box around to check how consistent this ratio value
is in nearby locations. Specifically, we move the box of the size: 30×50×50 along certain
directions and use a step length of 2 for each box size, resulting in 10 sample values. During
the process of moving the box around, we maintain the same box size and make sure that
the entire box is always inside the clot. Then we count the number of clot voxels inside the
box and calculate the porosity value. Table 2 shows some of the obtained porosity values.
Unless other specified, we choose in the paper an average value ∼= 0.15 for porosity in our
simulations.
Number of platelets in the middle slice of a clot. Since our model is 2D, we effectively
compare simulations with an image of a middle slice of a clot. To justify the number of
platelets used in the simulations (from 102 to 1000), we counted the number of platelets
within individual slices obtained from the experiments using the image analysis technique
described above. In our image setting, the size of a voxel in a 3D image is 0.443×10−9 mm3.
A typical clot at the stabilized stage usually consists of about 5 × 105 voxels. Thus, the
typical size of a clot is around 4.26× 10−5 mm3. The total number of pixels that are labeled
and classified as of the platelet type is usually in the range of (2000, 4000). The ratio of the
number of platelet pixels over the number of platelets is approximately 5/1. Therefore, the
total number of platelets in the slice is in the range of (400, 800), which is consistent with
the number used in the simulations. Figure 1 provides examples of images of a 2D slice of
the same experimental wild type clot together with corresponding numbers of platelets, at
different time points. In this example, the platelet number of the slice at one time point is
a little beyond the “usual” range of platelet numbers because the size of the clot is larger
than the “average” ones.

3 Discussion of the role of protein C

One potential problem with modeling the role of protein C in clot formation is that it is
not obvious where APC is generated in a developing thrombus since aggregating platelets
are not likely to expose TM. TM is exposed on a resting endothelium. It is unlikely that
PC plays a role in protecting the endothelium following laser induced injury. However, PC
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(a) (b) (c)

Figure 1: Images of the same slice in the middle of a wild type clot at different time points.
(a) The number of platelets = 695 (6 minutes after injury); (b) the number of platelets =
897 (6 minutes 40 seconds after injury); (c) the number of platelets = 1231 (7 minutes 20
seconds after injury).

might block activation of endothelium adjacent to the injury site. It is also unlikely that
undamaged endothelium upstream are the site of APC generation, since it is unlikely that
a significant amount of thrombin generated in the thrombus will diffuse upstream against
blood flow. Conceivably, thrombin reaches TM exposed on endothelium downstream, but
similarly it is not clear how the APC reaches the thrombus by diffusion upstream against
the flow. Therefore, it is hypothesized that APC production occurs on the endothelial cells
in the lateral direction of the injury.

4 Coagulation sub-model

4.1 Model equations

Notations:
d[ ]
dt

- ordinary time derivative of concentration for certain chemical;
∂[ ]
∂t

- partial time derivative of concentration for certain chemical;
[TF ] - concentration of tissue factor;
[V II] - concentration of factor 7 in blood flow;
[V IIa] - concentration of activated factor 7 in blood flow;
[Xm] - concentration of factor 10 binded to the platelet surface;
[TF : V IIa] - concentration of tissue factor and activated factor 7 complex.

d[TF ]

dt
= −k2[TF ][V II] + k1[TF : V II]− k4[TF ][V IIa] + k3[TF : V IIa] (4.1)

∂[V II]
∂t

+ u · ∇[V II] = DV II∇2[V II]− k2[TF ][V II] + k1[TF : V IIm]−
k5[TF : V IIm

a ][V II]− k6[Xa][V II]− k7[IIa][V II]
(4.2)
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d[TF : V IIm]

dt
= k2[TF ][V II]− k1[TF : V IIm] (4.3)

∂[V IIa]
∂t

+ u · ∇[V IIa] = DV IIa∇2[V IIa]− k4[TF ][V IIa] + k3[TF : V IIm
a ]+

k5[TF : V IIm
a ][V II] + k6[Xa][V II] + k7[IIa][V II]

(4.4)

d[TF :V IIm
a ]

dt
= k4[TF ][V IIa]− k3[TF : V IIm

a ]− k9[TF : V IIm
a ][X]

+k8[TF : V IIm
a : X]− k12[TF : V IIm

a ][Xa] + k11[TF : V IIm
a : Xa]−

k14[TF : V IIm
a ][IX] + k13[TF : V IIm

a : IX]−
k37[TF : V IIm

a ][Xa : TFPI]−
k42[TF : V IIm

a ][ATIII] + k15[TF : V IIm
a : IX]

(4.5)

∂[Xa]
∂t

+ u · ∇[Xa] = DXa∇2[Xa]− kon
10 [Xa](p10 − emtot

10 − zmtot
10 ) + koff

10 [Xm
a ]−

k12[TF : V IIa][Xa] + k11[TF : V IIa : Xa]− k34[Xa][TFPI]+
k33[Xa : TFPI]− k38[Xa][ATIII]

(4.6)

∂[IIa]
∂t

+ u · ∇[IIa] = DIIa∇2[IIa]− kon
2 [IIa](p2 − emtot

2 − zmtot
2 ) + koff

2 [IIm
a ]

−k41[IIa][ATIII]
−D(diff,IIEC

a )([IIa]− [IIEC
a ])

(4.7)

∂[X]
∂t

+ u · ∇[X] = DX∇2[X]− kon
10 [X](p10 − emtot

10 − zmtot
10 )+

koff
10 [Xm]− k9[TF : V IIa][X] + (k10 + k8)[TF : V IIa : X]

(4.8)

d[TF :V IIm
a :X]

dt
= k9[TF : V IIm

a ][X]− k10[TF : V IIm
a : X]− k8[TF : V IIm

a : X] (4.9)

d[TF :V IIam:Xa]
dt

= k12[TF : V IIm
a ][Xa]− k11[TF : V IIm

a : Xa] + k10[TF : V IIm
a : X]

−k36[TF : V IIm
a : Xa][TFPI] + k35[TF : V IIm

a : Xa : TFPI]
(4.10)

∂[IX]
∂t

+ u · ∇[IX] = DIX∇2[IX]− kon
9 [IX](p9 − emtot

9 − zmtot
9 ) + koff

9 [IXm]
−k14[TF : V IIa][IX] + k13[TF : V IIa : IX]

(4.11)

d[TF :V IIm
a :IX]

dt
= k14[TF : V IIm

a ][IX]− k15[TF : V IIm
a : IX]

−k13[TF : V IIm
a : IX]

(4.12)

∂[IXa]
∂t

+ u · ∇[IXa] = DIXa∇2[IXa]− kon
9 [IXa](p9 − emtot

9 − zmtot
9 ) + koff

9 [IXm
a ]

+k25[IXa : V IIIa : Xm] +−k40[IXa][ATIII]+
k15[TF : V IIm

a : IX]

(4.13)

7



∂[II]
∂t

+ u · ∇[II] = DII∇2[II]− kon
2 [II](p2 − emtot

2 − zmtot
2 ) +koff

2 [IIm] (4.14)

∂[V III]
∂t

+ u · ∇[V III] = DV III∇2[V III]− kon
8 [V III](p8 − emtot

8 − zmtot
8 ) + koff

8 [V IIIm]
−k17[IIa][V III]

(4.15)

∂[V IIIa]
∂t

+ u · ∇[V IIIa] = DV IIIa∇2[V IIIa]− kon
8 [V IIIa](p8 − emtot

8 − zmtot
8 )+

koff
8 [V IIIm

a ] + k17[IIa][V III]− k24[V IIIa]
+k23[V IIIa1L][V IIIa2]

(4.16)

d[IXa:V IIIa]
dt

= k19[V IIIa][IXa]− k18[IXa : V IIIa]− k21[IXa : V IIIa][X]+
k20[IXa : V IIIa : X]− k25[IXa : V IIIa] + k22[IXa : V IIIa : X]

(4.17)

d[IXa:V IIIa:Xm]
dt

= k21[IXa : V IIIa][X
m]− k20[IXa : V IIIa : Xm]−

k22[IXa : V IIIa : Xm]− k25[IXa : V IIIa : Xm]
(4.18)

∂[V IIIa1L]
∂t

+ u · ∇[V IIIa1L] = DV IIIa1L∇2[V IIIa1L]k24[V IIIa]− k23[V IIIa1L][V IIIa2]+
k25[IXa : V IIIa : X] + k25[IXa : V IIIa]

(4.19)

∂[V IIIa2]
∂t

+ u · ∇[V IIIa2] = DV IIIa2∇2[V IIIa2]k24[V IIIa]− k23[V IIIa1][V IIIa2]
+k25[IXa : V IIIa : X] + k25[IXa : V IIIa]

(4.20)

∂[V ]
∂t

+ u · ∇[V ] = DV∇2[V ]− kon
5 [V ](p5 − emtot

5 − zmtot
5 ) + koff

5 [V m]
−k26[IIa][V ]

(4.21)

∂[Va]
∂t

+ u · ∇[Va] = DVa∇2[Va]− kon
5 [Va](p5 − emtot

5 − zmtot
5 ) + koff

5 [V m
a ]

+k26[IIa][V ]
(4.22)

d[Xa:Va]
dt

= k28[X
m
a ][V m

a ]− k27[Xa : Va]− k30[Xa : Va][IIm] + k31[Xa : Va : IIm]
+k29[Xa : Va : IIm]

(4.23)

d[Xa:Va:IIm]
dt

= k30[Xa : Va][IIm]− k29[Xa : Va : IIm]− k31[Xa : Va : IIm] (4.24)
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∂[mIIa]
∂t

+ u · ∇[mIIa] = DmIIa∇2[mIIa]− kon
2 [mIIa](p2 − emtot

2 − zmtot
2 ) + koff

2 [mIIm
a ]

−k39[mIIa][ATIII]
(4.25)

∂[TFPI]
∂t

+ u · ∇[TFPI] = DTFPI∇2[TFPI]− k34[Xa][TFPI] + k33[Xa : TFPI]
−k36[TF : V IIa : Xa][TFPI] + k35[TF : V IIa : Xa : TFPI]

(4.26)

∂[Xa:TFPI]
∂t

+ u · ∇[Xa : TFPI] = DXa:TFPI∇2[Xa : TFPI]k34[Xa][TFPI]
−k33[Xa : TFPI]− k37[TF : V IIa][Xa : TFPI]

(4.27)

d[TF :V IIm
a :Xa:TFPI]
dt

= k36[FT : V IIm
a : Xa][TFPI]−

k35[TF : V IIm
a : Xa : TFPI]+

k37[TF : V IIm
a ][Xa : TFPI]

(4.28)

∂[ATIII]
∂t

+ u · ∇[ATIII] = DATIII∇2[ATIII]− k38[Xa][ATIII]− k39[mIIa][ATIII]−
k40[IXa][ATIII]− k41[IIa][ATIII]− k42[TF : V IIa][ATIII]

(4.29)

∂[Xa:ATIII]
∂t

+ u · ∇[Xa : ATIII] = DXa:ATIII∇2[Xa : ATIII] + k38[Xa][ATIII] (4.30)

∂[mIIa:ATIII]
∂t

+ u · ∇[mIIa : ATIII] = DmIIa:ATIII∇2[mIIa : ATIII] + k39[mIIa][ATIII]
(4.31)

∂[IXa:ATIII]
∂t

+ u · ∇[IXa : ATIII] = DIXa:ATIII∇2[IXa : ATIII] + k40[IXa][ATIII]
(4.32)

∂[IIa:ATIII]
∂t

+ u · ∇[IIa : ATIII] = DIIa:ATIII∇2[IIa : ATIII]k41[IIa][ATIII] ll (4.33)

d[TF :V IIm
a :ATIII]

dt
= k42[TF : V IIm

a ][ATIII] (4.34)

d[Xm
a ]

dt
= kon

10 [Xa](p10 − emtot
10 − zmtot

10 )− koff
10 [Xm

a ]− k28[X
m
a ][V m

a ] + k27[Xa : Va]
+k22[IXa : V IIIa : Xm]

(4.35)

d[IIm
a ]

dt
= kon

2 [IIa](p2 − emtot
2 − zmtot

2 )− koff
2 [IIm

a ]
+k16[X

m
a ][IIm] + k32[mIIm

a ][Xa : Va]
(4.36)
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d[Xm]
dt

= kon
10 [X](p10 − emtot

10 − zmtot
10 )− koff

10 [Xm]− k21[IXa : V IIIa][Xm]+
k20[IXa : V IIIa : Xm] + k25[IXa : V IIIa : Xm]

(4.37)

d[IXm]
dt

= kon
9 [X](p9 − emtot

9 − zmtot
9 )− koff

9 [IXm] (4.38)

d[IXm
a ]

dt
= kon

9 [IXa](p9 − emtot
9 − zmtot

9 )− koff
9 [IXm

a ]
−k19[V IIIm

a ][IXm
a ] + k18[IXa : V IIIa] + k25[IXa : V IIIa : X]+

k25[IXa : V IIIa]

(4.39)

d[IIm]
dt

= kon
2 [II](p2 − emtot

2 − zmtot
2 )− koff

2 [IIm]
−k16[X

m
a ][IIm]− k30[Xa : Va][IIm] + k29[Xa : Va : IIm]

(4.40)

d[V IIIm]
dt

= kon
8 [V III](p8 − emtot

8 − zmtot
8 )− koff

8 [V IIIm] (4.41)

d[V IIIm
a ]

dt
= kon

8 [V IIIa](p8 − emtot
8 − zmtot

8 )− koff
8 [V IIIm

a ]
−k19[V IIIm

a ][IXm
a ] + k18[IXa : V IIIa]

−k+
17[APC][V IIIm

a ] + (k+
17 + kcat

17 )[APC : V IIIm
a ]

(4.42)

d[V m]
dt

= kon
5 [V ](p5 − emtot

5 − zmtot
5 )− koff

5 [V m] (4.43)

d[V m
a ]

dt
= kon

5 [Va](p5 − emtot
5 − zmtot

5 )− koff
5 [V m

a ]
−k28[X

m
a ][V m

a ] + k27[Xa : Va]
−k−16[APC][V m

a ] + (k−16 + kcat
16 )[APC : V m

a ]

(4.44)

d[mIIm
a ]

dt
= kon

2 [mIIa](p2 − emtot
2 − zmtot

2 )− koff
2 [mIIm

a ]
−k32[mIIm

a ][Xa : Va] + k31[Xa : Va : IIm]
(4.45)

∂[IIEC
a ]

∂t
+ u0 · ∇[IIEC

a ] = D(diff,IIEC
a )([IIa]− [IIEC

a ])−
kon

tm[IIEC
a ]([TM ]− [TM : IIa]− [TM : IIa : PC])

+koff
tm [TM : IIa]

(4.46)

d[TM :IIa]
dt

= kon
tm[IIEC

a ]([TM ]− [TM : IIa]− [TM : IIa : PC])− koff
tm [TM : IIa]

−k+
pc[TM : IIa][PC] + (k−pc + kcat

pc )[TM : IIa : PC]
(4.47)

d[TM :IIa:PC]
dt

= k+
pc[TM : IIa][PC]− (k−pc + kcat

pc )[TM : IIa : PC] (4.48)

∂[APCEC ]
∂t

+ u0 · ∇[APCEC ] = D(diff,APCEC)([APC]− [APCEC ])+
kcat

pc [TM : IIa : PC]
(4.49)

∂[APC]
∂t

+ u · ∇[APC] = −D(diff,APCEC)([APC]− [APCEC ])
−k−16[APC][V m

a ] + (k−16 + kcat
16 )[APC : V m

a ]
−k+

17[APC][V IIIm
a ] + (k+

17 + kcat
17 )[APC : V IIIm

a ]

(4.50)
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4.2 Numerical methods for solving model equations

The 2D NS equations are solved by using the projection method. The convection-reaction-
diffusion equations are solved by an operator splitting scheme. The convection and diffusion
components of each chemical equation is firstly solved by a Crank-Nicolson time discretiza-
tion scheme. Then reaction components of these partial differential chemical equations are
solved together with the chemical ODEs. To compute advective terms [u ·∇[ ]]n+1/2 in these
chemical PDEs, the fluid velocity is needed. For this reason, NS Equations and PDE type
chemcial reaction equations are solved together.
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Figure 2: a) Effect of the FXI on thrombin generation. (b) Total thrombin amount generated
(thrombin (IIa) + meizothrombin (mIIa)) with concentration of TF = 25 pM. The solid line
represents total thrombin generation without inhibitors ATIII and TFPI. the line with cross
(+) represents total thrombin generation with inhibitors. Factor XI is included. (c) Total
thrombin amount generated (thrombin (IIa) + meizothrombin (mIIa)) with concentration
of surface binding sites = 1.0, 0.1, 0.01 of normal concentration respectively.
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4.3 Calibration of the coagulation sub-model

After adding factor XI (FXI) to the Kenneth Mann’s model (modified ODEs model) we found
that it modestly promoted thrombin generation and that thrombin concentration reached
a slightly higher peak at an earlier time (see Figure 2(a)). These results are consistent
with in vitro measurements of coagulation assays and clinical observation that FXI deficient
individuals experience only minor bleeding problems.

After comparing Figure 2(b), obtained using modified ODE model, with Figure 2 from
(6), we conclude that modified ODEs model is quantitatively identical to Mann’s coagulation
model in the static environment except for producing an earlier peak time in thrombin
generation due to FXI. Therefore, we were able to estimate values of volume concentration of
binding sites for surface factors by adjusting numbers of surface binding sites in the modified
ODEs model to obtain production rate of thrombin similar to that of the original Mann’s
model in the static environment. Notice that concentration of surface binding sites exhibits
threshold effects. Figure 2(c) shows simulation results obtained using modified ODEs model
for different numbers of binding sites. Generation of thrombin is negligible in case of 1% of
normal concentration of surface binding sites.
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