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1.   Biological ranges of parameters and sets fixed parameters considered in the simulations 

 

 Description Range Units Ref 
  

Negative feedback parameter   
 

 

10-20 - 1015 
 

M-1 
 

1, 2 
 

 
 

TF (case 1-3) or mRNA  
(case 4-7) production rate  
 

 
10-3 - 2*10-1 

 
s-1 

 
1, 3 

 

 
 

Rate of repressor binding to gene 
 

 

108 – 2*1011 
 

M-1s-1 
 

2, 3 
 

 
 

DNA-TF(2) dissociation rate 
 
 

 

 
 

s-1 
 

By definition 

  

TF degradation rate 
 

 

2*10-5 - 10-2 
 

s-1 
 

1, 3 
 

 
 

Rate of RNA polymerase binding to gene 
 

 

109 - 1011 
 

M-1s-1 
 

Calculated from 2 
 

 
 

DNA-RNA polymerase dissociation rate 
 

 

1 - 103 
 

s-1 
 

4 
 

 
 

mRNA degradation rate 
 

 

10-4 – 10-1 
 

s-1 
 

1, 5 
 

 
 

mRNA translation rate 
 

 

10-3 - 1 
 

s-1 
 

1,  5 
 

 
 

TF dimerization rate 
 

5*107 – 3*108 
 

 

M-1s-1 
 

6, 7, 8 
 

 
 

TF dimer dissociation rate 
 

 

1 - 103 
 

s-1 
 

4 
 

Table S1. Ranges of values to consider when tuning rates and reporting noise measurements.  

 

 Description Value Units Ref 
 

 
 

TF / mRNA production rate  
 

 

10/60 
 

s-1  
 

 
 

Rate of repressor binding to gene 
 

 

108 
 

M-1 s-1  

  

TF degradation rate 
 

 

10-4 
 

s-1 
 

1,3 
 

 
 

Rate of RNA polymerase binding to gene 
 

 

1.8*1010 
 

M-1 s-1 
 

3 
 

 
 

DNA-RNA polymerase dissociation rate 
 

 

1 
 

s-1  
 

 
 

mRNA degradation rate 
 

 

10-2  
 

s-1 
 

1,5 
 

 
 

mRNA translation rate 
 

 

10/60 
 

s-1 
 

1,5 
 

 
 

TF dimerization rate 
 

5*107 
 

M-1 s-1 
 

 
 

 
 

TF dimer dissociation rate 
 

 

1 
 

s-1  
 

P 
 

 

RNA polymerase 
 

10-7 
 

M  

 

Table S2. Basic simulation parameter set 1. This set of parameters lies well inside biologically feasible 

ranges and portrays prototypical values found in the literature. 



 

 Description Value Units Ref 
 

 
 

TF / mRNA production rate  
 

 

10/60 
 

s-1  
 

 
 

Rate of repressor binding to gene 
 

 

1010 
 

M-1 s-1  

  

TF degradation rate 
 

 

10-4 
 

s-1 
 

1,3 
 

 
 

Rate of RNA polymerase binding to gene 
 

 

5*109 
 

M-1 s-1 
 

Calculated from kp in 3 
 

 
 

DNA-RNA polymerase dissociation rate 
 

 

10/60 
 

s-1 
 

Calculated from kp in 3 
 

 
 

mRNA degradation rate 
 

 

10-2  
 

s-1 
 

1,5 
 

 
 

mRNA translation rate 
 

 

1/60 
 

s-1 
 

1,5 
 

 
 

TF dimerization rate 
 

109 
 

M-1 s-1 
 

 
 

 
 

TF dimer dissociation rate 
 

 

1 
 

s-1  
 

P 
 

 

RNA polymerase 
 

10-7 
 

M  

 

Table S3. Simulation parameter set 2. This set of parameters was chosen to illustrate a middle point in 

the range of variation for k2. This value is significantly lower than the one used in (2) but potentially too 

large (6). Since the rate of dimerization of the repressor is thought to be approximately the same order as 

the binding of the repressor to the DNA, we fixed the value of k9 to be 109, which lies slightly outside the 

range found in the literature.  We additionally chose rate k6 to be slightly outside its range to be the same 

order as k1, in order to check whether a balance of the two rates reported significant deviation to the 

typical case when k1 < k6 is considered. Surprisingly, no noticeable difference was observed in terms of 

noise change or qualitative behavior as when using the equivalent rate values of parameter set 1. 

 



2. Adopting the right modeling regime.   

 

The very first step for accurately representing gene regulatory systems is building the right model within 

the right regime. Namely, one has to define a set of relevant chemical reactions and determine whether 

the biochemical phenomena are best described by stochastic or deterministic interactions, with temporal 

or spatio-temporal resolution, and embedded in a discrete or continuous regime, among other 

possibilities. A continuous deterministic approach, such as a differential equation model, is only adequate 

when dealing with large numbers of molecules and when discreteness and internal noise have no 

noticeable macroscopic effects. However, if the number of molecules of some species is small or if the 

system is susceptible to noise amplification, one has to inevitably consider a discrete stochastic 

approach. This applies, in particular, to gene regulatory systems with feedback control. 

Fundamentally, the dynamics of chemical reaction networks are described by the chemical master 

equation (CME), and the PDF we are interested in is the solution to the CME. The CME describes the 

time evolution of the probability , for having  molecules in a system with R 

elementary reactions, N molecular species, and volume Ω at time t. With reasonable assumptions (16), 

one defines a set of propensity functions  that measure the probability of each reaction happening. 

The propensities depend only on the current state x. Hence, the process is memory-less and considered 

Markovian. It can be shown that for any state x, the PDF satisfies the following discrete parabolic partial 

differential equation (PDE), subject to appropriate initial and boundary conditions: 

 

where  is the stoichiometric vector associated with reaction , defining the way the state x 

transitions to state x +  when reaction j occurs. The CME is then a set of such PDEs, where each 

equation corresponds to each possible state of the system. 

Stochastic processes can be studied by trajectory based approaches or by their underlying probability 

distribution function (PDF), which tracks how the probability of having a certain number of molecules 

changes over time. A PDF approach is in many ways desirable, but computationally intensive if not 

impossible to attain, especially as the dimension of the model grows. This is one of the main reasons why 

Monte Carlo and trajectorial approaches have become so popular. Nevertheless, PDF approaches can 

sometimes – although rarely - be more computationally efficient than trajectory based approaches, so 

always sticking to a trajectorial approach should be taken with a pinch of salt.  

 



3. Metrics for noise characterization 

 

In general, there are two ways in which stochasticity can be considered. The ‘single cell’ type (Fig. S1a) 

or the ‘multiple-cell’ type (Fig. S1b). Preliminary stochastic simulations gave identical average results for 

both types of simulation, the reason why we decided to report our results under the first framework (Fig. 

S1a). It is not surprising that both frameworks yielded similar simulation results as intrinsic stochastic 

noise is inherently a Markovian process and by consequence, both cases can be considered 

mathematically equivalent. However, when it comes to experimental results that report noise 

measurements stemming from independent cells one should be a bit cautious since some factors, such 

as plasmid transfection or cell-cycle stage, cannot be considered homogeneous.  

Here, we chose the CV for preliminary noise measurements based on independent exact trajectories of 

the CME for two reasons. First and foremost, the coefficient of variation is a more suitable basis for 

experimental interpretations (9). Secondly, we observed in preliminary numerical simulations of the 

‘RNAP’ module that the Fano factor, defined as the variance of the observations divided by their mean, 

clearly contradicts noise behavior observations (data not shown). Moreover, the protein distribution in 

models with different underlying assumptions need not necessarily be Poissonian.  

A last important note with respect to noise assessment is the source considered for the calculation of the 

CV. Unfortunately, there are several definitions of noise sources throughout the literature. Quite 

frequently one can find identical terms referring to different concepts, making it difficult to determine 

whether two analyses with seemingly contradictory results actually refer to the same issues. For example, 

in (9) the author portrays several ways in which noise sources can be classified, specifying that intrinsic 

noise is due to random births and deaths of individual molecules, and extrinsic noise due to fluctuations in 

reaction rates. The author explains that the terms ‘intrinsic’ and ‘extrinsic’ make a distinction between the 

origin and propagation of noise; their biological meaning being always defined with respect to a specified 

component or process. For example, in gene expression the total protein noise is divided into intrinsic 

(protein ‘birth’ and ‘death’ processes) and extrinsic (mRNA and gene terms). On the other hand, other 

studies such as (10) define all three sources as intrinsic to distinguish them from extrinsic fluctuations in 

the overall state of the cell. To complicate things further, some studies use the equivalent terms internal 

and external, the latter referring to e.g. particular states of the cell-cycle or environmental fluctuations, or 

even make distinctions between sources of extrinsic noise (11).     

 

In our case, we calculate the CV of ‘classic’ internal noise, i.e. with respect to dynamic differences 

stemming from the stochastic decisions of when the next reaction occurs in the system, and what type of 

reaction it is. With respect to the terminology used in (9) it probably sums up to ‘total protein noise’, 



although we find the term a bit uncomfortable given that some external factors can actually contribute to 

protein variations considerably, making the term ‘total protein noise’ insufficient. 

 

 

4. Notes on lumped transcription-translation QSS models 

 

As mentioned in the main text, stochastic trajectories of the Chemical Master Equation do not necessarily 

resemble solutions of a perturbed ODE system, the reason why we decided to double-check the results in 

(3). In order to explore the potential differences in noise profiles, we obtained independent exact 

trajectories of the CME through the stochastic simulation algorithm (SSA) and compared our CV 

measurements with those obtained in (3). 

Quite interestingly, when we fixed all reaction rate parameters and varied the feedback strength alone, 

the distributions of TF numbers of the unregulated and autoregulated systems were quite distinct. 

Notably, the unregulated case had a much smaller variation (CV = 4∙10 -6 and CV = 5∙ 10-4 for the 

unregulated and regulated case, respectively) (Fig. S2A). However, the steady state concentration of TF 

decreases with increasing feedback (Fig. S3) and one could argue the lower molecular numbers lead to 

increased noise with feedback. To eliminate this influence, we next fixed the steady state of TF to 1,000 

molecules by tuning the protein production rate (k1) accordingly (Fig. S2B,). In this case, the CVs of the 

unregulated and autoregulated systems were almost identical (4.3∙10 -4 and 4.6∙10-4). These results agree 

with previous findings (13) and are contrary to the original analysis (3), underlining the critical importance 

of noise metrics.  

Similarly, when analyzing the “RNAP’ and ‘DM’ modules (as well as their combination), none of the 

systems displayed noise increase nor, counter intuitively, extreme noise attenuations with increasing gain 

of the negative feedback. The steepest noise attenuation was achieved when tuning the RNA polymerase 

binding/unbinding rates (k5, k6) followed by the TF degradation rate (k4). Tuning rates that capture TF 

dimerization (k9, k10) even showed no noticeable noise variation with respect to increasing feedback. This 

underlines that detailed analyses of parameter spaces are required for characterizing noise behavior 

even of simple gene circuits. In Fig. S6A/D it can be observed that with identical model structure, 

feedback strength, and average TF levels, noise behavior depended on the specific parameterizations of 

the circuits, that is, the parameter used for tuning. These differences did not result from insufficient 

sampling of trajectories because the associated standard deviations were low (Fig. S6B,E). 

 

 

 

 



5. Example: the ‘TT’ module. Parametrization assuming a QSS, the FSP and calculation of the 

moments of its CME  

The ‘TT’ module consists of six elementary reactions. For this example we have four molecular species: 

gene (G), mRNA (M), transcription factor (TF) and gene bound with transcription factor (GTF); the sum of 

all states of the gene is always equal to one. Using the terminology from Fig. 1B (main text) the reactions 

(without preferential order) are: 

        

         

If we further assume the reactions portraying repressor binding/unbinding to the gene to be much faster 

than all other reactions, a QSS in the states of the gene can be obtained. The first step is to derive the 

steady state of the ODEs for species G and GTF, later on introducing them in the ODEs for M and TF: 

 

 

The parametrization of a particular system is obtained by factorizing a single rate from the steady state of 

the ODE system. Here, we have: 

 

 

 

 

where AV is Avogadro’s number multiplied by the volume (in this case one femtoliter) and . 

When tuning the parameter  we assume rate k2 to be fixed. 

In the “Stochastic discrete effects” section of the main text we mentioned that random changes at the 

mRNA level lead to a protein scaling behavior according to the difference between the reachable integer 



numbers of mRNA molecules and the deterministic steady state solution for the mRNA. In order to 

illustrate this let us consider a deterministic quasi-steady state of the repressor  in the ‘TT’ 

module, a prototypical scenario where jumps to states with higher TF numbers are visible. The 

corresponding state for  will settle to 0.6 molecules ( ).  

With discrete molecule levels and high regulation, the mRNA level will either stick to the initial value –with 

high probability- or visit close-by states. With a ratio of 1/0.6 ~ 1.66, a set of commonly visited states of 

the system naturally revolves around 166 molecules of TF. 

In order to obtain the FSP of our system, we focused on the establishment of a ‘dynamic equilibrium’. We 

use the term ‘dynamic’ in the sense that noise prevents the system from remaining at one state for long 

periods of time, and that the probability of reaching many states from a particular initial condition can vary 

considerably (14,15). In more detail, we explored the scenarios under which the mRNA level could be 

equal to 0, 1 and 2 molecules using the FSP (16) considering 1050 indexed possible states of the system. 

This corresponds to the states with TF varying between 1 and 350 molecules and mRNA varying between 

0, 1 and 2 molecules, as these were bounds on reachable states observed in several stochastic 

trajectories with the initial state being TF = 100 and mRNA = 1. First, we obtained the probability for each 

state after 105 seconds, which is identical to the time span for the SSA simulations (Figs. S8 and S9) 

using two sets of nominal reaction rates. However, differences of the columns of the FSP higher than 10-2 

indicated that the system was not close to a ‘dynamic equilibrium’, the reason why we further obtained the 

probability for each state after 109 seconds and compared with the corresponding SSA simulations. 

Interestingly, even when genetic regulation is a Markovian process and any reachable mRNA level is 

achievable at any time point, the span of probabilities of the reachable states is only revealed when 

considering the state matrix at ‘dynamical equilibrium’. 

Our simulations highlighted the dependency of numbers of mRNA molecules on both system’s 

parameters and feedback level. Moreover, the FSP shows ‘islands’ of high probability around the 

‘increased’ TF states that are a result of the augmented mRNA concentration (Supplementary Fig. S10). 

Both results fit well with corresponding SSA simulation results (Supplementary Tables S2 and S3, Fig. S8 

and S9) and suggest the dependency on the exact parameter configuration, even with fixed feedback and 

steady-state initial TF levels.  

There are a few algorithmic subtleties to note. We believe our choice of analyzed system’s states 

highlights typical prokaryotic gene expression scenarios, for which the FSP algorithm ran quite efficiently. 

However, if the inclusion of other possible states deems to be relevant, a Krylov-based FSP such as (15) 

would be preferable. 



In the “Protein bursts” section of the main text we mentioned that tuning rates k4 and k8 alongside 

feedback strength can result in random but sudden bursts of protein production. Given the observed size 

of the protein bursts, an extremely large number of possible system states has to be considered. Hence, 

computing the PDF through the FSP is not an option. Nevertheless, for calculating the moments of the 

CME, one can follow the methodology of (1, their Supplementary Material), where exact solutions for the 

moments of linear systems are found through: 

 

In (1), the authors obtain linearizations depending on feedback strength, and from there obtain 

expressions for the first and second moments (i.e. mean and variance). Using our notation, we can 

observe the CV 

 

 

Note that, since , the tuned repressor translation rate increases with 

increasing feedback. Also, protein half-lives are longer than mRNA half-lives, which implies k4 < k7. With 

these two considerations one can see that: 

 

 

where the feedback parameter was transformed to numbers of molecules, to be consistent with units of 

other parameters. As was discussed in the main text, the CV largely disregards asymmetries in 

distributions. Nevertheless, due to the lack of any type of multimodality in this case, it can still hint at the 

average growth pattern of TF at high feedback levels. 

 



6. Eigenvalues of associated deterministic systems 

 

Here we present the case-by-case formula for the eigenvalue(s) of the associated deterministic systems. 

It should be noted that, within these formulas, TF is expressed in terms of molarity. Also, we use the 

shorthand notation: 

 

 

Case 1 – ‘RNAP’ module 

 

 

Case 2 - ’DM’ module 

 

 

Case 3 - ’RNAP’ along with ‘DM’ modules  

 

 

Case 4 – ’TT’ module 

 

 

 

Case 5 – ‘RNAP’ along with ‘TT’ modules 



 

 

 

Case 6 - ’DM’ along with ‘TT’ modules 

 

 

 

Case 7 – ‘RNAP’ along with ‘DM’ and ‘TT’ modules  

 

 

 

Interestingly, when tuning rates k7 and k8, trajectories with protein bursts are only visible in areas where 

the overall noise growth is higher than that of the protein burst average jump . To verify this, 

we computed the values R of the slopes of the logarithm of the noise divided by the values of the slopes 

of the logarithm of b, and checked the feedback values in which such ratio was larger or equal to 1. 

Tuning the mRNA transcription rate (k8) always displayed protein bursts, i.e. for all considered steady 



states of TF there were zones in which . On the other hand, tuning the mRNA degradation rate (k7) 

yielded protein bursts for steady states of TF = 10 or lower, where  as was already expected. 

However, for steady states of  we observed that  and stochastic focusing was the driving 

force behind noise increase. Illustrative examples can be found in Figure S11 and S12. 

However, having  cannot be considered a blind rule of thumb as it, by itself, cannot explain the 

increase of noise when tuning rates k1 and k4 with TF = 1 molecule. Quite contrary to what was observed 

in all cases that did not include mRNA transcription, we observed protein bursts scenarios while the value 

of b is invariant (b = ).   

 

  



Supplementary Figures 

 

         A                   B 

                

Figure S1. Two different types of collecting sample points of stochastic simulations. (A) Independent runs 

(corresponding to different cells) where for each simulation the number of molecules of TF is collected at 

the same time, T*. (B) Single run (single cell experiment) where the number of molecules of TF is 

collected at equally spaced time steps, all of which lie beyond T*. T* is assumed to be a point in time 

beyond the average time it takes for a system to reach its steady state.  

 

 

                  

Figure S2. Histograms of normalized numbers of TF for the Becskei-Serrano model (6) using identical 

kinetic rate constants. Stochastic simulation results were obtained (A) by fixing rate k1 and increasing 

feedback from 0 to 211, and (B) by fixing the steady-state TF to 1,000 molecules and tuning k1 

accordingly. The values of ‘unit one’ correspond to normalized observations of the CV. 

B A 



   A                 B 

 

Figure S3. Discrepancies in noise measurements for the Becskei-Serrano model (3), where the feedback 

parameter is denoted by  out of consistency with their notation. (A) Histograms of normalized number 

of molecules with increasing feedback strength. Molecule numbers were obtained at each second for a 

total of 104 seconds, normalizing to the steady state corresponding to each set of parameters (B) Number 

of molecules present in steady state (top), CV for each corresponding steady state and set of parameters 

(middle), CV for increasing feedback, while fixing the steady state by tuning  (bottom). 

 

 

 

Figure S4. Combination of the three basic modules outlined in Fig. 1 of the main text.  

 



 

 

 

Figure S5. Average CV behavior for the models containing the ‘RNAP’ and ‘DM’ modules. CV behavior 

(color coded) is compared as a function of number of repressor proteins in deterministic steady state 

(used as initial condition) and of feedback strength. Colors show log10(CV), white crosses indicate cases 

where all kinetic parameters are biologically feasible and empty boxes correspond to feedback values for 

which the reaction rate would be negative. Panels represent the CV when (A) tuning rate k5, the rate at 

which RNA polymerase binds to the gene, (B) tuning rate k6, DNA-RNA polymerase complex dissociation 

rate (C) tuning rate k9, the protein dimerization rate, (D) tuning rate k10, the repressor homodimer 

dissociation rate. 

 

 

 

 

 



 

 

Figure S6. Noise behavior for models that lump transcription and translation in one step. CV (color 

coded) is compared as a function of TF in deterministic steady state (used as initial condition) and of 

feedback strength. Colors show log10(CV), white crosses indicate biologically feasible kinetic parameters, 

and empty boxes correspond to cases where the tuned rate is negative (hence unrealistic). (A,C,D,F) 

Average and (B,E) standard deviation of the CV. Cases correspond to (A,B,D,E) ‘RNAP’ module (C) ‘DM’ 

module and (F) ‘RNAP’ and ‘DM’ modules. (A-C,F) correspond to cases where rate k1, the rate at which 

the TF is produced, is tuned. (D,E) correspond to cases where rate k4, the TF degradation rate, is tuned. 

 

 

 

 

 



 

 

 

Figure S7. Feedback-dependent noise (CV) behavior of models that consider transcription and 

translation as separate processes. Steady state protein levels were fixed by tuning the mRNA 

degradation rate (k7, A-D) and the protein translation rate (k8, E-H), respectively. Columns refer to 

different models, namely (A,E) ‘TT’ module, (B,F) ‘TT’ and ’RNAP’ modules, (C,G) ‘TT’ and ’DM’ module, 

and (D,H) combination of all three modules. Colors show log10(CV) and white crosses indicate cases 

where all kinetic parameters are biologically feasible. 



A       B 

   

C       D 

 

 

Figure S8. FSP of the ’TT’ module, considering reaction rate set 2. The lines in green, red and blue refer 

to the probability of having 0, 1 and 2 molecules of mRNA, respectively. (A-B) FSP for all feedback values 

(A) evaluated at 105 seconds and (B) evaluated at 1015 seconds. (C-D) Corresponding SSA runs  showing 

in red the mRNA level and in blue the number of molecules of TF, (C) total simulation time of 105 seconds 

with characteristic values of α = 1012 and α = 1015 (D) total simulation time of 109 seconds with 

characteristic values of α = 1010 and α = 1015. 

 

 

 



A       B 

 

C       D 

 

Figure S9. FSP of the ’TT’ module, considering reaction rate set 1. The lines in green, red and blue refer 

to the probability of having 0, 1 and 2 molecules of mRNA, respectively. (A-C) FSP for all feedback values 

(A-B) evaluated at 105 seconds and (C) evaluated at 1010 seconds. The initial conditions used are a 

probability equal to one of being at state (A) M = 0, TF = 100, (B) M = 1, TF = 100 and (C) either case 

(identical probability profiles), (D) Corresponding SSA runs with characteristic values of α = 1010 and α = 

1015  showing in red the mRNA level and in blue the number of molecules of TF, with a total simulation 

time of 105 seconds. From (A-B) it can be noticed that initial conditions have a great impact in the 

probability profiles when the FSP is not at ‘dynamical equilibrium’. In (C) The probability of observing 2 

mRNA molecules is minimal, but it should be noticed that the number of molecules of mRNA can in 

principle be higher. This is to be expected as the FSP did a truncation on the state space, and the 

probability of the states summed to almost one, the small remainder leaving room for cases with higher 

numbers of mRNA/TF molecules. 



A       B 

 

C 

 

 

Figure S10. Contour plots of the FSP algorithm applied to the ’TT’ module, using the parameter set 2 

while varying the mRNA degradation rate k7. Probability is studied case by case (i.e. depending on TF) 

(A) for having in the system 0 molecules of mRNA (B) 1 molecule of mRNA (C) 2 molecules of mRNA. 

Notice that the sum of the values in the contour ‘columns’ yields the probability for a particular feedback 

value to portray the corresponding number of molecules of mRNA. 

 



 

 

Figure S11. Time evolution of a sample stochastic focusing scenario, depending on different negative 

feedback strengths (Kd = ). Stochastic simulation of the ‘TT’ module (in blue) with an initial condition 

from the deterministic steady state of TF = 100 molecules (in red), using parameter set 2. The time span 

is larger than regular simulations, for illustration purposes. 

 

 

 

 

 

 

 



 

 

Figure S12. Time evolution of a sample protein burst scenario, depending on different negative feedback 

strengths (Kd = ). This simulation was obtained from simulating the ‘TT’ module (in blue) with an initial 

condition from the deterministic steady state of TF = 100 molecules (in red), using parameter set 2. Time 

span is larger than regular simulations, for illustration purposes. 

 

 

 

 

 



 

 

                

 

Figure S13. FSP of the ’TT’ module, considering reaction rate set 1 (A) and set 2 (B), with fixed feedback 

α = 1010 (stars) and α = 1015 (circles). Probabilities are evaluated for times between 102 and 1015 seconds, 

time represented in log scale. The lines in green, red and blue refer to the probability of having 0, 1 and 2 

molecules of mRNA, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

A B 



 

 

Figure S14. Feedback-dependent noise (CV) behavior of the ‘TT’ module while assuming a QSS, as 

compared with previously published criteria for burst-like behavior and multimodality. Steady state protein 

levels were fixed by tuning the mRNA degradation rate (k7, A-E), the protein translation rate (k8, F-J), and 

the protein degradation rate (k8, K-O), respectively. Columns refer to different test criteria, namely (A,F,K) 

if k4 > k7 the TF distribution will follow that of mRNA (B,G,L) if k2+k3 < k7 < k4 the TF distribution will also 

follow that of mRNA (C,H,M) k2,k3 < k7 yields bimodality (D,I,N) k3<k4 yields bimodality and (E,J,O) if 

k7>>k4, -quantified here as an order of magnitude difference- one can observe protein bursts. Colors 

show log10(CV) and white crosses indicate cases predicted by the corresponding criterion.  

 

 

 



 

 

Figure S15. Time-correlation behavior of the ‘TT’ module while assuming a QSS, as compared with 

previously published criteria for burst-like behavior and multimodality. Steady state protein levels were 

fixed by tuning the mRNA degradation rate (k7, A-E), the protein translation rate (k8, F-J), and the protein 

degradation rate (k8, K-O), respectively. Columns refer to different test criteria, namely (A,F,K) if k4 > k7 

the TF distribution will follow that of mRNA (B,G,L) if k2+k3 < k7 < k4 the TF distribution will also follow that 

of mRNA (C,H,M) k2,k3 < k7 yields bimodality (D,I,N) k3<k4 yields bimodality and (E,J,O) if k7>>k4, 

quantified here as an order of magnitude difference, one can observe protein bursts. Colors show 

log10(CV) and white crosses indicate cases predicted by the corresponding criterion. Empty boxes 

indicate relaxation to inactive gene state, or non-computable cases. 

 

 

 



 

 

 

 

Figure S16. Comparison of average CV behavior for models with (A) and without a quasi-steady state 

assumption (B-F), while tuning rate k1 (transcription or lumped transcription-translation rate). The CV 

behavior of 100 simulations (color coded) is compared as a function of number of repressor proteins in 

deterministic steady state (used as initial condition) and of feedback strength. Colors show log10(CV), 

white crosses indicate cases where all kinetic parameters are biologically feasible and empty boxes 

correspond to feedback values for which the reaction rate would be negative. Panels represent the CV 

when considering (A-B) the ‘RNAP’ module (C) the ‘DM’ module (D) ‘TT’ module (E) ‘TT’ along with 

‘RNAP’ modules (F) ‘TT’ along with ‘DM’ modules.  

 

 

 



 

 

 

Figure S17. Comparison of the ‘TT’ module (A,C) with a QSS assumption and (B,D) without. Colors show 

log10(CV) and steady state protein levels were fixed by tuning the mRNA degradation rate (k7, A-B) and 

the protein translation rate (k8, C-D). 

 

 

 

 

 

 

 

 



 

A       B 

     

C       D       

 

 

 

Figure S18. Prototypical simulations of the ’TT’ module with a QSS assumption (blue) and without 

(green). Protein bursts were obtained while varying the protein translation rate k8  in a time scale of 106 

seconds with (A-B) nominal reaction rate set 2 and (C-D) nominal reaction rate set 1. Figures correspond 

to cases where (A,C) α = 1012, (B,D) α = 1015 . 

 
 



 

 

 

 

Figure S19. Feedback-dependent noise (CV) behavior of the ‘TT’ module, without assuming a QSS, as 

compared with previously published criteria for burst-like behavior and multimodality. Steady state protein 

levels were fixed by tuning the mRNA degradation rate (k7, A-E), the protein translation rate (k8, F-J), and 

the protein degradation rate (k8, K-O), respectively. Columns refer to different test criteria, namely (A,F,K) 

if k4 > k7 the TF distribution will follow that of mRNA (B,G,L) if k2+k3 < k7 < k4 the TF distribution will also 

follow that of mRNA (C,H,M) k2,k3 < k7 yields bimodality (D,I,N) k3<k4 yields bimodality and (E,J,O) if 

k7>>k4, -quantified here as an order of magnitude difference- one can observe protein bursts. Colors 

show log10(CV) and white crosses indicate cases predicted by the corresponding criterion.  

 

 

 



 

 

 

Figure S20. Time-correlation behavior of the ‘TT’ module, without assuming a QSS, as compared with 

previously published criteria for burst-like behavior and multimodality. Steady state protein levels were 

fixed by tuning the mRNA degradation rate (k7, A-E), the protein translation rate (k8, F-J), and the protein 

degradation rate (k8, K-O), respectively. Columns refer to different test criteria, namely (A,F,K) if k4 > k7 

the TF distribution will follow that of mRNA (B,G,L) if k2+k3 < k7 < k4 the TF distribution will also follow that 

of mRNA (C,H,M) k2,k3 < k7 yields bimodality (D,I,N) k3<k4 yields bimodality and (E,J,O) if k7>>k4, 

quantified here as an order of magnitude difference, one can observe protein bursts. Colors show 

log10(CV) and white crosses indicate cases predicted by the corresponding criterion. Empty boxes 

indicate relaxation to inactive gene state, or non-computable cases.     
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