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ABSTRACT The unfolding of von Willebrand Factor (vWF) has been shown to be a crucial step in the process of blood clotting.
Here we show that elongational flows, such as those appearing during vasoconstriction or stenosis, are the primary activation
mechanisms of vWF, and unfold the multimeric protein at flow rates 2 orders of magnitude below those corresponding to pure
shear. This finding complements the current understanding of blood clotting from the molecular to the physiological level, and
gives new insights into the connection between clotting anomalies, such as stenosis and Heyde’s syndrome.
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Simulation Methods

We consider the polymer to be composed of N beads of ra-
dius a interacting through a potential U . The dynamics of the
ith bead position ri is given by the Langevin equation:

∂

∂t
ri = v∞(ri)−

∑
j

µij · ∇riU(t) + ξi(t) (1)

where v∞(r) is the undisturbed solvent flow profile, µij is
a mobility matrix, and ξi is a random velocity that satisfies
〈ξi(t)ξj(t′)〉 = 2kBTµijδ(t − t′). For simple elongational
flow the undisturbed flow profile is v∞(r) = ε̇zẑ−0.5ε̇xx̂−
0.5ε̇yŷ where ε̇ is the extensional flow rate, x, y, z are the
spatial coordinates, and x̂, ŷ, ẑ are the unit vectors parallel
to the x, y, and z axis respectively. The hydrodynamic in-
teractions with the underlying fluid are captured through the
mobility matrix µij . We include hydrodynamic interactions
(HI) by using the Rotne-Prager-Yamakawa (RPY) form of
µij : [1] [2]
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where rij = ri − rj is the vectorial distance between the
ith and jth bead, µ0 = 6πηa is the self-mobility of a single
bead (η is the solvent viscosity), and rij = |rij |. Notice that
for i = j one obtains the correct limit of the self-mobility
of a single particle in unbounded flow, i.e., µij = µ0I. The
RP tensor is an approximation to the full hydrodynamic in-
teraction between two spheres and accounts to first order for
the finite sphere size. Such hydrodynamic simulations have
been successful in describing swollen polymers in various
flows. [3] [4] [5]

The potential energy U is written as U = US + ULJ .
The term accounts for the connectivity of the chain is given

by: [6]

US =
κ

2
kBT

N−1∑
i=1

(ri+1,i − 2a)2 (3)

where ri+1,i is the distance between adjacent beads along
the chain, and the spring constant is taken to be κ = 200/a2

which limits stretching of the chain to a negligible level. The
second term is a Lennard-Jones potential written as:

ULJ = ũkBT
∑
ij

((2a/rij)12 − 2(2a/rij)6) (4)

where ũ determines the depth of the potential (in units of
kBT ). By varying this quantity one can tune the polymer
to be swollen (small ũ) or collapsed (large ũ). To simulate
the dynamics of the polymer in elongational flow, we dis-
cretize eq. 1 and use a time step ∆t of 10−4τ , where τ is
the characteristic monomer diffusion time τ = a2/µ0kBT .
Averages are taken over a total number of Langevin steps of
at least 2× 107, with the first 106 simulation steps typically
discarded for equilibration.

Elongational Flow in a Gradient Blood Vessel Ra-
dius

Here we elaborate on the presence of an elongational flow
profile in the midst of a blood vessel that is changing radii.
While the results here are generally applicable, we consider
only the simple case of a linear radius gradient. We again
present the flow profile upon entrance to a smaller vessel
from a larger one that was considered in Figure 1 in Figure
S1. We also reiterate that the elongational flow in this profile
occurs to the greatest extent in the center of the vessel as the
velocity of the fluid flow is accelerated over (roughly) the
length D. The elongational nature of this flow stems from
the fact that, at any given point in this regime, the velocity
of the fluid preceding the point is slower than the fluid ahead
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of it. From the reference frame of this point, it appears that
it is ”stretched” in this direction. Graphically, we can clearly
represent this by subtracting out the reference velocity of a
given point. In Figure S1 we specifically consider the point
in the red box. This is at the maximum of the velocity gra-
dient and is thus the point of maximum elongational flow
rate. The velocity vector at this position is subtracted from
the rest of the vectors in the profile, and the resulting profile

in the direct vicinity is given in Figure S2a. Figure S2b is a
purely elongational flow profile (for comparison). We note
that, while not a perfect match, it is apparent that both flow
fields overwhelmingly contain the same features, notably the
stretching portion of the flow in the z-direction. This verifies
the notion that the flow given in Figure S1 is indeed an elon-
gational flow.

FIGURE 1 The flow profile considered in Figure 1, with the point of interest (whose velocity will now become the reference velocity)
shown in a red box. This point is chosen since it occurs at a maximum velocity gradient (as seen in the graph to the right). We will
look at the profile immediately surrounding this point at the points contained within the black dotted box.
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FIGURE 2 a) The area contained in the black dotted box shown above in Figure S1 with the reference velocity subtracted from
every vector. b) A pure elongational flow using similar values (as described in equation 1) We note that both a) and b) are almost
identical, corroborating the assertion that a change in vessel radius produces a local elongational flow.
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