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METHODS 
 
Constraint surface exploration 
 
Being a linear approximation, Equation (6) is only valid for small changes in torsion angles. What if one wants to determine structures far from 
the starting structure that still satisfy the fixed end groups constraint?   
One can use the following simple algorithm: 
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where ( )n0δτ  is the matrix of null space vectors at the nth iteration step,   ( )nλ  is a normalised column vector (the ith row corresponding to the 
ith null space vector) that determines the local direction of movement on the constraint surface, and sΔ is the step size.  In principle, systematic 
variation of ( )nλ  should allow for exploration of the whole constraint surface. This will be demonstrated for a pentapeptide in Results. 
 
Steepest descent and gradient ascent on the constraint surface 
 
Steepest descent or gradient ascent can be performed to minimize or maximize any function of the torsions ( )τΦ  keeping to the constraint 
surface: 
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where ( ) ( )( ) ( ) ( )( ) ( )( )nsnnsnn jj τδττδττ Φ−Δ+Φ=Δ+ΔΦ 00 . 
 
Torsion angle targeting 
 
There are occasions when it is desirable to be able to change selected torsion angles in a segment with constrained end groups to specified 
values. The method, which is also a steepest descent algorithm, has the current point on the constraint surface move iteratively in the direction of 
the projection onto the null space (which defines the hyperplane tangential to the curved surface of constraint) of the vector joining the target 
point and the current point in the subspace defined by the set of torsion angles that are targeted.  If argtτ is a column vector of same length as 
( )nτ  with components that are the target values or otherwise zeros, then: 
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where ( )nzerosτ  is the same as ( )nτ  except the same set of components are set to zero as for argtτ , i.e. the components corresponding to the 
torsions that are not targeted.  Targeting can be stopped when targets have been achieved, i.e. when ( ) 0ΔT =n .  However, in some cases it may 
not be possible to achieve target values which will occur when ( ) ( ) 0ΔTδτ =nn t0 , i.e. when the vector joining the target and the current point in 



the subspace is orthogonal to the tangential hyperplane.  Thus during a targeting run both ( )nΔT  and ( ) ( )nn t0 ΔTδτ  are monitored.  Targeting 

was terminated when ( )nΔT   fell below 0.1 or ( ) ( )nn t0 ΔTδτ  fell below 0.001.  As constraining particular torsions is simply a matter of 

removing them from the calculation by eliminating the corresponding columns of ( )τΥ , it is a simple matter to simultaneously target selected 
torsions whilst constraining others. 
 
RESULTS 
 
Exploring conformations on the constraint surface for short polypeptides 
 
Segments shorter than a pentapeptide 
 
Searching for lower rank structures in tri-and tetra- peptides 
 
By variation of τ it is possible to find structures where for 4Nres = , ( )( ) 5rank =τΥ providing a single null space vector.  This was achieved by 
using a simplex search method implemented in the MATLAB function fminsearch to search for τ  such that in a singular value 
decomposition of ( )τΥ , one of the singular values becomes equal to zero.  The search was started from a large number of randomly generated 
structures.  It appears there are a vast number of such structures covering the whole Ramachandran plot when plotting φ ,ψ  angles for individual 
residues.  Movement along the null space vector for each of these structures shows a wide variety of small movements, but these movements are 
in directions that lead immediately to full rank structures ( ( )( ) 6rank =τΥ , for which the only solution is 0δτ =0 , i.e. they become dynamically 
trapped straight away). 
 
It is even possible to find structures for 3Nres = , where ( )( ) 3rank =τΥ , again giving a single null space vector.  Starting from various extended 
conformations the resulting structures all had a central residue with Ramachandran coordinates (180,180) which means the backbone atoms 
between α

1C  and  α
3C  lie in the same plane.  The allowed small movement is a crankshaft like rotation of the peptide units (26-29) either side of 

α
2C  which rotate in opposite directions. These effect a small translation of α

2C .  Only a small rotation is allowed as any movement results in full 



rank ( ( )( ) 4rank =τΥ  for which the only solution is 0δτ =0  i.e. they become dynamically trapped straight away).  Repeating the procedure from 
various α-helix conformations, all resulting structures have a central residue with Ramachandran coordinates (0,0).    
 
Pentapeptides 
 
With one angle constrained 
 
Using the iterative procedure described in Algorithm(A1), structures far from the starting structure can be reached.  In the case of a pentapeptide 
where the 2φ  is constrained, e.g. the second residue mimics a proline, there are 7 free torsions and solving Equation (6) gives a single null space 
vector.  Algorithm(A1) with ( )nλ  =1 and 10.s =Δ  was applied to α-helix, extended starting structures and various loop structures (see legend to 
Figure 1S for details).  This resulted in cycling behaviour.  Figure 1S shows the φ ,ψ  angles for residues 2, 3 and 4 in a Ramachandran plot.  As 
one can see residues 3 and 4 trace closed cycles, whilst residue 2 moves up and down the vertical straight line. This means that the state point 
moves on a 1-dimensional closed loop in torsion angle space and that torsion angle changes along the segment are all perfectly correlated.  It is 
noticeable that the extended structure is able to change its conformation much more than the α-helix. This is generally true when each of theφ  
angles of residues 2-5 is constrained. Residues 2 and 3 in the extended structure case remain in the allowed region for all amino acids residue 
types in the Ramachandran plot.  For residue 4 regions visited are low energy only for a glycine residue.   Movies showing the movement 
corresponding to one cycle for both the α-helix and extended starting structures are available at Supporting Material. Starting from a 
neighbouring structure gives a neighbouring trajectory in most cases (see “Cusps on Surface” in main paper). 
 
Systematic search method 
 
The systematic methods involved iterating along the second null space vector (so with ( ) ( )tn 10=λ ), as determined directly by the MATLAB 
function null.  After a large number of steps, a single iteration step along the first null space vector was made (so with ( ) ( )tn 01=λ ).  This 
process was repeated a large number of times. In order to be sure that the whole surface was covered a second method of exploration was 
performed.  In this method iteration steps were performed along the null space vector determined by evaluating ( )nλ  at each step such that the 

kτ  angle did not change.  This was achieved by setting ( )nλ  equal to the normalised vector of 
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kτ  in the j-th null space vector at step n.  As the component of ( ) ( )( )
t

k

k

n
nnn ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

)(
)(1 0

2

0
10

2
0
1 δτ

δτδτδτ  corresponding to kτ is 0, this means kτ  does not 

change. After a large number of steps a single iteration step was performed along the null space vector determined by evaluating ( )nλ  such that 

the kτ  angle would increase or decrease. This was achieved by setting ( )nλ  equal to the normalised vector of 
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δτδτδτ  corresponding to kτ  is 1 this means kτ  is forced to change. This process was repeated a large 

number of times. Thus the whole surface was explored by performing cycles such as those shown in Figure S1 over all allowed kτ  angles.  This 
produces different traces to those produced by the first method.   
 
LADH loop definition variation 
 
The loop 290-301 was varied ±1 residue at either end (but not simultaneously; 291-301 was not included as 291φ  is one of the targeted torsion 
angles).  The distance between the Cγ’s of Pro296 and Leu57 which starts at 4.3 Å is given after targeting in Table SIII below.  Our result which 
states that without the constraints on 294ψ , 295φ , 295ψ , 296φ   the block to domain closure is not removed, is unaltered by this slight variation in 
brace residue definition.  In all cases targets were achieved except for segment 290-300 where targets were nearly achieved ( ( ) °= 91.3nΔT ).   



 
Table SI 
Parameter values used 
Parameter Value 
C-N distance 1.33 Å 
N-Cα distance 1.47 Å 
Cα-C distance 1.53 Å 
C-O distance 1.23 Å 
C–N–Cα bond angle 122° 
N–Cα–C bond angle 109.5° 
Cα –C–N bond angle 115° 
Cα –C–O bond angle 121° 
Peptide-bond torsion 180° 
 



 
Table SII 
φ ,ψ  angles of decapeptide structures derived from α-helix and extended structures for which the correlation coefficients between 1ψ  
and 10φ is +1 or -1. 

 Res NO: 1 2 3 4 5 6 7 8 9 10 corr( 1δψ 10δφ ) 10δφ / 1δψ
φ  ― -31.84 -52.67 -79.18 -63.87 -56.46 -80.65 -57.22 -63.58 -56.09 α ψ  -33.31 -45.77 -38.63 -30.62 -48.57 -33.71 -34.43 -48.34 -87.87 ― 

1.0 
 

0.8 

φ  ― -10.50 -64.74 -62.81 -96.23 -66.03 -61.69 -95.76 -67.34 -76.25 α ψ  -44.41 -35.12 -58.39 -31.51 -34.19 -58.32 -32.37 -33.46 -10.85 ― 
-1.0 

 
-1.6 

φ  ― -90.49 -128.37 -104.50 -114.75 -110.55 -140.97 -148.97 -163.26 -130.61β ψ  101.3 154.19 134.45 134.14 123.82 148.09 154.15 166.65 111.45 ― 
1.0 

 
1.0 

φ  ― -99.916 166.65 171.89 -75.27 153.25 -143.21 -131.36 9.30 -64.88 β ψ  94.33 -171.78 -177.65 91.78 -175.58 127.47 -168.20 37.47 -118.07 ― 
-1.0 

 
-3.1 

 
Table SIII 
Variation in loop definition for LADH 
Segment 294ψ , 295φ , 295ψ , 296φ  constrained, 

Pro296 Cγ atom-Leu57 Cγ atom distance 
after targeting 

294ψ , 295φ , 295ψ , 296φ unconstrained, 
Pro296 Cγ atom-Leu57 Cγ atom distance 
after targeting 

290-301 11.8 Å 6.9 Å 
290-302 11.0 Å 6.8 Å 
290-300 14.7 Å 7.3 Å 
289-301 12.6 Å 8.6 Å 
 
 



 
Figure S1 
 

 
 



Starting from a pentapeptide structures with the φ  of the residue 2 constrained the torsion angles were changed according to Algorithm A1. The 
null space comprised a single vector.  The φ ,ψ  traces for residues 2 (red), residue 3 (green) and residue 4 (blue) are shown in a Ramachandran 
plot.  The dots indicate the starting values (omitted in (a) for clarity).  (a) Two sets of traces are shown: one set starting from an extended 
structure with the following φ ,ψ  angles (-123,136)1, (-60,136)2, (-123,136)3, (-123,136)4,  (-123,136)5; the other starting from an α-helix with 
the following φ ,ψ  angles (-57,-47)1,(-60,-47)2, (-57,-47)3,(-57,-47)4,  (-57,-47)5. Movies of the structures performing one cycle are available in 
Supporting Material. (b) Starting from loop α-α 1.1.5 (using Oliva et al. (25) classification code, PDB code: 1ECA, segment 49-53A) (c) α-β 
1.2.5 (PDB code: 5P21, segment 137-141A) (d) β-α 3.1.1 (PDB code: 2TMD, segment 395-399A) (e) β-β link 2.1.1 (PDB code: 1EFT, segment 
248-252A) (f) β-β hairpin 2.3.2 (PDB code: 1HOE, segment 16-20A). 



 
Figure S2 
 

 
 
See legend to Figure 2 in main paper. 



 
Figure S3 

 
 
 
See legend to Figure 2 in main paper. 
 


