Supporting Information

Challenging the Limit: NMR Assignment of a 31 kDa Helical Membrane Protein

Chengdong Huang, and Smita Mohanty*

Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849

Contact Information: Smita Mohanty, mohansm@auburn.edu

Table of Content

Experimental Details	S2-S4
References	S4
Figure S1	S5
Figure S2.	S6
Figure S3	S7
Figure S4.	S8

Experimental details

Overexpression and purification of ²H, ¹³C, ¹⁵N-labeled C-terminal domain of Stt3p

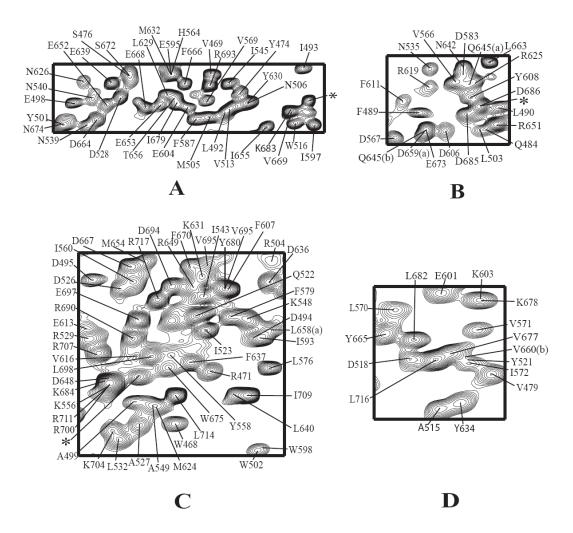
Recombinant uniformly triple labeled (²H, ¹³C, ¹⁵N-labeled) C-terminal domain of Stt3p was expressed in E. coli BL21 (DE3) codon plus cells using pET-28c vector that contained an IPTGinducible gene for the protein containing an N-terminal hexa-histidine tag. The transformed cells were grown in 3 mL of LB medium at 37 °C for 3 h, then transferred to 12.5 mL of unlabeled minimal M9/H₂O medium, and grown until an OD₆₀₀ of ~ 0.5 . The cells were then separated from the medium by centrifugation at 3,000 rpm for 15 minutes and transferred to 50 mL of M9/D₂O culture containing 0.12% (m/v) of ¹⁵NH₄Cl as the sole nitrogen source and 0.4% (m/v) of ¹³Clabeled glucose as the sole carbon source. At $OD_{600} \approx 0.5$, the culture was diluted to 300 mL with M9/D₂O. The expression of the His-tagged protein was induced at OD₆₀₀ ~ 0.4 with 0.5 mM IPTG, and the culture was allowed to grow for an additional 11-12 h at 30 $\,^{\circ}$ C (final OD₆₀₀ ~ 2.0). The cells were harvested by centrifugation. The cell pellet was passed through 4 cycles of freeze-thaw using liquid nitrogen and ice respectively and resuspended in B-PER solution (Pierce). The cells were then lysed by sonication (10×15 s) and the supernatant was removed after centrifugation at 10,000 × g for 30 min. The pellet was resuspended once with 10% B-PER solution, sonicated and centrifuged again as above. The inclusion bodies were stored at -20 ℃ until needed.

The purification of the triple labeled recombinant protein was carried out as reported recently.

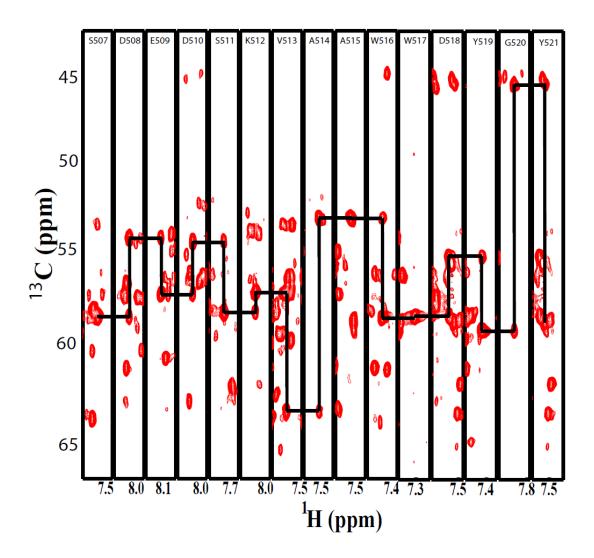
NMR samples and data collection

NMR samples contain 25 mM sodium phosphate buffer (pH 6.5), 1% (v/v) glycerol, 100 mM sodium dodecyl-d25 sulfate (SDS, Sigma-Aldrich), 1 mM EDTA, 10% D₂O. Protein concentration

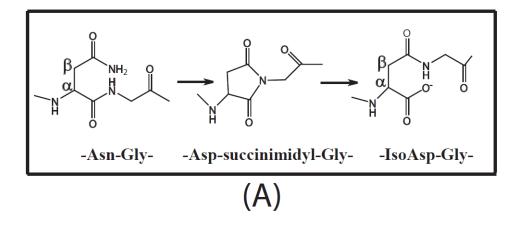
was ~ 0.6 mM. Higher concentration of protein led to deterioration of spectral quality, presumably due to protein aggregation.


TROSY-based HNCA, HNCO, HN(CO)CA, HN(CA)CO, HNCACB, and CT- HN(CO)CACB were collected on a Bruker Avance 600-MHz spectrometer fitted with a triple resonance 1H/13C/15N TCI cryoprobe equipped with z-axis pulsed field gradients in the Department of Chemistry and Biochemistry, Auburn University. Moreover, TROSY-based HN(CA)CB and HN(CA)CO were also collected on a Varian Inova 900-MHz NMR spectrometer equipped with a triple resonance cold probe at the Southeast Collaboratory for High-Field Biomolecular NMR, a research resource at the University of Georgia.

NMR data processing and analysis


All NMR spectra were processed and analyzed using NMRPipe² and NMRView software.³ Nearly complete NMR assignment of ¹H, ¹³C, and ¹⁵N backbone resonances (255 out of 274 residues) was achieved for the C-terminal domain of Stt3p with the exception of 19 residues including 11 N-terminal residues located near the hexa-histidine tag (M1-H9 and S19-H20) and eight other residues (L561, K562, I584, N585, I591, P559, P661 and S702). Residue P661 cannot be assigned because the residue 662 is also a proline. We observed that the N-terminal residues around the hexa-histidine tag are very weak and broad similar to what has been seen for other proteins (BMRB accession# 5833).⁴ The unassigned residues could not be detected probably due to local exchange-induced line-broadening.

References


- (1) Huang, C.; Mohanty, S.; Banerjee, M. Biochemistry. 2010, 49, 1115-1126.
- (2) Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G., Pfeifer, J.; Bax, A. J. Biomol. NMR. 1995, 6, 277-293.
- (3) Johnson, B. A.; Blevins J. J. Biomol. NMR. 1994, 4, 603-614.
- (4) Ponchon, L.; Dumas, C.; Fesquet, D.; Padilla, A. J. Biomol. NMR., 2004, 28, 299-300

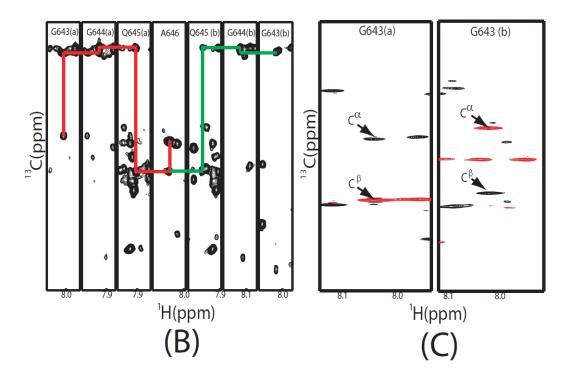


Figure S1. Four regions, labeled as A, B, C and D, of the ¹⁵N-¹HN TROSY-HSQC spectrum (Figure 1 in the main text) of U-{¹⁵N, ¹³C, ²H}-labeled C-terminal domain of Stt3p are expanded and peaks are labeled with residue numbers.

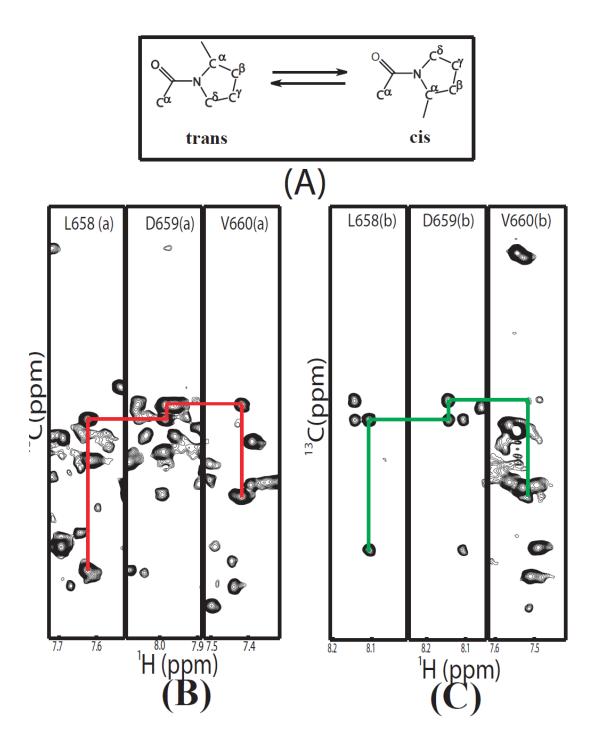


Figure S2. [¹H, ¹³C]-strips for residue S⁵⁰⁷-Y⁵²¹ from 3D HNCA spectrum of U-{¹⁵N, ¹³C, ²H}-labeled C-terminal domain of Stt3p showing sequential assignment. Residues are labeled and numbered on the top of each strip.

Figure S3. (A) The deamidation of the N^{642} side chain resulting in the isoasparaginyl linkage between the N^{642} - G^{643} pair. (B) Two sets of HNCA spectrum strip plots of assignments for residues G^{643} - Q^{645} (shown as red and green line connectivity respectively). These two sets of assignment correspond to the residues following the –Asn-Gly- (residues connected by red lines) and –IsoAsp-Gly- linkages (residues connected by green lines) respectively. (C) CT-HN(CO)CACB strip plot of the two assigned G^{643} residue. Negative peaks are shown in red while positive peaks are shown in black. Note in the left strip, the negative sign of C^{α} and positive sign of C^{β} for residue N^{642} are unambiguously indicative of –IsoAsp-Gly- linkage between the N^{642} - G^{643} pair; while the right strip demonstrate a normal –Asn-Gly- linkage (positive sign for C^{α} and negative sign for C^{β}).

Figure S4. Identification of proline trans/cis isomerizational linkage in the C-terminal domain of Stt3p. (A) proline trans/cis isomerization. (B) and (C) are two sets of HNCA spectrum strip plots of assignments for residues L^{658} - V^{660} , indicating peptide bond V^{660} - P^{661} adopts both trans and cis isomers.