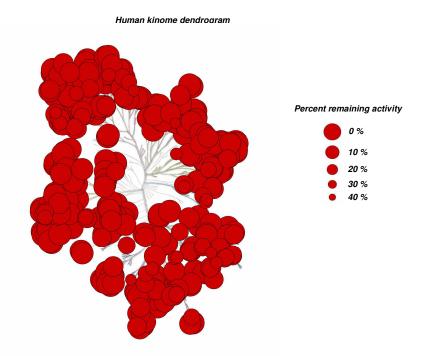


Supplemental Figure 1. (A) Cross-linking of Akt1 and fluorescent substrate peptide **2** with cross-linker **17** at different pH values. Akt1 (220 nM) and fluorescent peptide **2** (1 μ M) were treated with cross-linker **17** (20 μ M) for 20 min at r.t. at different pH values, followed by SDS-PAGE and in gel scanning fluorescence. (excitation at 480 nM, emission collected with a 520 nM band pass filter) (B) Akt1 (560 nM) and fluorescent peptide **2** (1 μ M) were treated with cross-linker **17** (20 μ M) for 20 min at r.t. in the presence of increasing concentrations of β -mercaptoethanol, followed by SDS-PAGE and in gel fluorescence scanning. (C) Decomposition of the cross-linker **17** (20 μ M) for 20 min at r.t., then boiled for 5 min, followed by SDS-PAGE and in gel scanning fluorescence. (excitation at 480 nM, emission collected with a 520 nM band pass filter) **17** (20 μ M) for 20 min at r.t., then boiled for 5 min, followed by SDS-PAGE and in gel scanning fluorescence. (excitation at 480 nM, emission collected with a 520 nM band pass filter)


Supplemental Figure 2. Concentration dependence for the crosslinking reaction at different concentrations of cross-linker **17**. Akt1 (220 nM) and fluorescent peptide **2** (1 μ M) were treated with indicated concentrations of the cross-linker **17** for 20 min at r.t. at pH 6.5, followed by SDS-PAGE and in gel scanning fluorescence. (excitation at 480 nM, emission collected with a 520 nM band pass filter).

Supplemental Figure 3. Concentration dependence for the crosslinking reaction at different concentrations of FI-ZZRPRTSCF, **2**. Akt1 (220 nM) and different concentrations of fluorescent peptide **2** were treated with the cross-linker **17** (20 μ M) for 20 min at r.t., at pH 6.5, followed by SDS-PAGE and in gel scanning fluorescence. (excitation at 480 nM, emission collected with a 520 nM band pass filter).

Materials. Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Sodium cyanoborohydride, butyl lithium, thiophene-2,3-dicarboxaldehyde, ethyleneglycol, N-hydroxysuccinimide, oxalylchloride, N,N-diisopropyl-N-ethylamine, 2-aminoethanol, β -mercaptoethanol (BME), trifluoroacetic acid (TFA). Anhydrous, low-amine N,N-dimethylformaide (DMF) was purchased from EM science. Recombinant AKT1 was purchased from Calbiochem. Fluorescent peptide substrates were prepared as described earlier.¹ Typhoon 9400 was used for all direct in-gel scanning fluorescent measurements (490 nm excitation band, 520 emission filter)

Kinase assays and binding constant measurements for compounds 3 and 4. All measurements were performed as described earlier.²

Supplemental Figure 4. Small molecule-kinase interaction map for compound 3 that was screened against a panel of 359 human kinases. Kinases found to bind are marked with red circles, where larger circles indicate higher-affinity binding. The kinase dendrogram adapted and is reproduced with permission from Science was (http://www.sciencemag.org/) Signaling Technology, and Cell Inc. (http://www.cellsignal.com/).

	Compound 3, % remaining	Compound 4, % remaining
	kinase activity compared to	kinase activity compared to
Kinase	control	control
AAK1	0.5	0.65
ABL1	4.8	3.2
ABL1(E255K)	12	10
ABL1(F317I)	40	40
ABL1(F317L)	21	21
ABL1(H396P)	4.8	2.8
ABL1(M351T)	3.8	2.1
ABL1(Q252H)	3.5	1.5
ABL1(T315I)	0	0
ABL1(Y253F)	4	2.6
ABL2	2.6	0.5
ACVR1	0.1	0
ACVR1B	0.8	0.8
ACVR2A	0.65	0.85
ACVR2B	1.9	1.4
ACVRL1	3.4	1.6
ADCK3	12	85
ADCK4	2.6	17
AKT1	100	100
AKT2	94	100
AKT3	100	100

Supplemental Table 1. Kinase binding interactions for compounds 3 and 4 with 402 kinases.

ALK	0.45	0.15
AMPK-alpha1	0.75	0.15
AMPK-alpha2	0.55	0.6
ANKK1	1.4	0.15
ARK5	0.55	0.45
ASK1	4.5	68
ASK2	5.1	15
AURKA	0.7	1.5
AURKB	0.45	0
AURKC	0.25	0.65
AXL	0.2	0
BIKE	0.2	0.4
BLK	0.3	0.05
BMPR1A	2.4	1
BMPR1B	0	0.05
BMPR2	0	0.55
BMX	8.2	12
BRAF	47	88
BRAF(V600E)	50	99
BRK	13	27
BRSK1	2.3	1.9
BRSK2	4.1	0.7
ВТК	0.65	9.3
CAMK1	0.55	2.4
CAMK1D	2.8	6.8

CAMK1G	15	35
CAMK2A	4	7.4
CAMK2B	4	9
CAMK2D	7.7	7.4
CAMK2G	15	18
CAMK4	100	49
CAMKK1	1.2	6.4
CAMKK2	4.4	1.4
CDC2L1	2.8	28
CDC2L2	3.4	40
CDK11	7.4	96
CDK2	0	0
CDK3	0	0
CDK5	0	0.65
CDK7	0	0.1
CDK8	18	88
CDK9	0.2	0.8
CDKL2	0.85	0.35
CDKL3	0.2	0
CDKL5	0	0.15
CHEK1	6.6	0
CHEK2	3.6	2.9
CIT	1.9	3.3
CLK1	0.5	0.2
CLK2	0.2	0.35
	I	

CLK3	3.5	2.2
CLK4	0.85	2.4
CSF1R	4.2	0.1
CSK	20	65
CSNK1A1L	39	0.95
CSNK1D	10	0.05
CSNK1E	6.2	0.7
CSNK1G1	28	22
CSNK1G2	14	0.4
CSNK1G3	22	3.2
CSNK2A1	2	1.6
CSNK2A2	3	0.8
СТК	3.9	2.6
DAPK1	0.45	0.75
DAPK2	1.8	5.4
DAPK3	0.6	0.9
DCAMKL1	3.2	0.3
DCAMKL2	0.15	0.35
DCAMKL3	0.2	0.15
DDR1	0.45	2
DDR2	1.8	2.5
DLK	2.7	2.1
DMPK	1.8	0.85
DMPK2	7.7	1.4
DRAK1	0.05	0.05

DRAK2	0.4	0.3	
DYRK1A	0.1	0.15	
DYRK1B	0.3	0.3	
DYRK2	0.35	0.7	
EGFR	16	47	
EGFR(E746-A750del)	18	9.6	
EGFR(G719C)	16	45	
EGFR(G719S)	22	50	
EGFR(L747-E749del, A750P)	10	7.5	
EGFR(L747-S752del, P753S)	20	22	
EGFR(L747-T751del,Sins)	15	16	
EGFR(L858R)	15	18	
EGFR(L858R,T790M)	12	9.2	
EGFR(L861Q)	13	25	
EGFR(\$752-1759del)	19	29	
EPHA1	1.2	3.4	
EPHA2	1	9.2	
EPHA3	0.05	1.8	
EPHA4	4.6	12	
EPHA5	0.05	1.8	
EPHA6	0.45	1.3	
EPHA7	0.1	0.15	
EPHA8	20	46	
EPHB1	0	0.25	
EPHB2	5	14	

EPHB3	6.7	7.9
EPHB4	1.1	5
EPHB6	0.25	0.7
ERBB2	76	100
ERBB3	5.2	88
ERBB4	30	59
ERK1	0	5
ERK2	0	4.8
ERK3	0.2	23
ERK4	0.3	29
ERK5	0	3.6
ERK8	0.1	0.1
ERN1	0.35	1.6
FAK	0.2	0.5
FER	2.1	0.25
FES	13	3.6
FGFR1	0.25	0.05
FGFR2	0.8	0.7
FGFR3	0.95	1.4
FGFR3(G697C)	1.2	0.25
FGFR4	5	0.85
FGR	2	1.1
FLT1	0.25	0.1
FLT3	0.1	0
FLT3(D835H)	0	0

FLT3(D835Y)	0.35	0.35
FLT3(ITD)	0	0.2
FLT3(K663Q)	0.4	0.45
FLT3(N841I)	0.3	0.2
FLT4	0	0
FRK	3.8	9.2
FYN	1	0.85
GAK	0.5	3.6
GCN2(Kin.Dom.2,S808G)	0.2	0.1
GRK1	2	0.85
GRK4	0	0
GRK7	0.3	0.2
GSK3A	0	0
GSK3B	0.05	0.05
НСК	1.8	0.5
HIPK1	0.1	0.55
HIPK2	0.2	0.45
НІРКЗ	0.35	0.2
HIPK4	0	0
HPK1	2.1	0.85
HUNK	23	5
ICK	0.05	0.45
IGF1R	0.1	0.5
IKK-alpha	0.55	4.2
IKK-beta	1.4	44

IKK-epsilon	3.4	1.9
INSR	0.4	1.9
INSRR	0.25	0.4
IRAK1	0.35	0.1
IRAK3	0.55	2.6
ІТК	0.05	0.2
JAK1(JH1domain-catalytic)	0.65	3.4
JAK1(JH2domain-pseudokinase)	0	0
JAK2(JH1domain-catalytic)	0.55	1.6
JAK3(JH1domain-catalytic)	0	0.75
JNK1	3.3	68
JNK2	3.8	92
JNK3	3.8	23
KIT	0.55	0
KIT(D816V)	0.7	0.45
KIT(L576P)	0.15	0
KIT(V559D)	0.1	0
KIT(V559D,T670I)	6.4	0.1
KIT(V559D,V654A)	16	2.2
LATS1	4	3
LATS2	3.9	1.7
LCK	0.25	0.35
LIMK1	1.7	1.4
LIMK2	3.8	10
LKB1	0	0

LOK	0.25	0.05
LTK	11	3.6
LYN	8.4	4.1
LZK	0.3	0.3
МАК	0.45	20
MAP3K1	28	0
MAP3K15	5.4	11
MAP3K2	3.4	0.7
МАРЗКЗ	0.1	0.1
MAP3K4	36	9.3
MAP4K2	0.4	0.3
MAP4K3	1.4	1.2
MAP4K4	1	0.45
MAP4K5	0.5	0.15
MAPKAPK2	46	15
MAPKAPK5	0.1	0
MARK1	8.2	0.45
MARK2	1.6	0.85
MARK3	0	0
MARK4	2.6	0
MAST1	0	0
MEK1	0.1	0.2
MEK2	0.1	0.2
MEK3	0.45	0.75
MEK4	0.3	37

MEK6	0.4	18
MELK	9.6	0
MERTK	0	0
MET	0.25	0.35
MET(M1250T)	0.1	0.05
MET(Y1235D)	0.55	1.6
MINK	0	0
MKNK1	2.7	2.8
MKNK2	7	14
MLCK	0.05	0
MLK1	0.1	0.05
MLK2	6.4	1.2
MLK3	1.4	0.15
MRCKA	43	49
MRCKB	39	19
MST1	1.4	1.2
MST1R	69	54
MST2	3.2	0.2
MST3	0.15	0.4
MST4	0.15	0.1
MUSK	0.4	0.55
MYLK	6	8.2
MYLK2	0.2	0.2
МҮОЗА	1.4	1.3
MYO3B	9.4	1.8

NDR1	2	3.6
NDR2	9.2	24
NEK1	1.6	9.6
NEK2	8.2	7.2
NEK5	0.65	0.85
NEK6	0	0
NEK7	0.3	0.1
NEK9	0.25	0.15
NIM1	17	2.4
NLK	4.3	33
OSR1	2.6	9.2
p38-alpha	82	100
p38-beta	19	100
p38-delta	0.7	100
p38-gamma	14	100
PAK1	3.6	19
PAK2	16	38
PAK3	3	2.4
PAK4	0.8	2.8
PAK6	1.9	6.2
PAK7	0.2	0.25
PCTK1	0.25	0.15
PCTK2	0	1.6
PCTK3	0	0.35
PDGFRA	14	0.35
	i I	I

PDGFRB	0.05	0
PDPK1	12	17
PFTAIRE2	0.2	3.4
PFTK1	0	2.3
PHKG1	3.6	3.5
PHKG2	0.5	2.3
PIK3C2B	46	100
PIK3C2G	12	97
PIK3CA	58	98
PIK3CA(C420R)	82	100
PIK3CA(E542K)	99	100
PIK3CA(E545A)	83	100
PIK3CA(E545K)	92	100
PIK3CA(H1047L)	65	96
PIK3CA(H1047Y)	77	100
PIK3CA(M1043I)	100	98
PIK3CA(Q546K)	88	100
РІКЗСВ	64	100
PIK3CD	33	87
PIK3CG	8.6	69
PIK4CB	0.15	1.8
PIM1	49	100
PIM2	12	100
PIM3	45	100
PIP5K1A	5.3	0
		I I

PIP5K2B	0.75	1.2
PKAC-alpha	40	26
PKAC-beta	28	26
PKMYT1	81	52
PKN1	2	2
PKN2	8	3.8
PLK1	4.8	3
PLK2	0.35	0.25
PLK3	0.95	5.2
PLK4	0.7	0.4
PRKCD	14	4.7
PRKCE	9.3	1.5
PRKCH	10	8.6
PRKCQ	11	26
PRKD1	0.85	0.55
PRKD2	0.05	0
PRKD3	0.05	0
PRKG1	11	3.8
PRKG2	16	9.2
PRKR	0.45	2
PRKX	30	3.6
PRP4	2.4	7.5
PYK2	1.5	1
QSK	7.9	2.9
RAF1	100	100
		I

RET	0	0
RET(M918T)	0	0
RET(V804L)	0	0
RET(V804M)	0	0
RIOK1	0.4	2.2
RIOK2	0.7	0.45
RIOK3	0.3	0.45
RIPK1	0.3	1.8
RIPK2	4.2	12
RIPK4	0.05	0.05
ROCK1	4.4	4.6
ROCK2	13	13
ROS1	0.75	1.2
RPS6KA1(Kin.Dom.1-N-terminal)	0.4	0.3
RPS6KA1(Kin.Dom.2-C-terminal)	0.95	35
RPS6KA2(Kin.Dom.1-N-terminal)	1	0.75
RPS6KA2(Kin.Dom.2-C-terminal)	0.35	4.6
RPS6KA3(Kin.Dom.1-N-terminal)	7.4	4.4
RPS6KA4(Kin.Dom.1-N-terminal)	2.4	0.45
RPS6KA4(Kin.Dom.2-C-terminal)	0.1	0.25
RPS6KA5(Kin.Dom.1-N-terminal)	2.3	3
RPS6KA5(Kin.Dom.2-C-terminal)	5.1	14
RPS6KA6(Kin.Dom.1-N-terminal)	3.9	3.5
RPS6KA6(Kin.Dom.2-C-terminal)	2	42
SBK1	0	0

SgK085	0	0.4
SgK110	2.9	2.2
SIK	4.3	4.2
SIK2	8	7
SLK	0.2	0.1
SNARK	0.35	0.55
SRC	0.1	0.1
SRMS	0.35	6.8
SRPK1	0.4	0
SRPK2	1.4	1.4
SRPK3	0.3	0.15
STK16	0.25	1.4
STK33	2.4	0.85
STK35	9.8	3.2
STK36	2.5	13
STK39	0.6	2.1
SYK	0.6	0.15
TAK1	0.3	0.2
TAO1	0	3.1
TAOK1	0.1	0.25
TAOK3	0.1	0.3
TBK1	2.7	2.4
TEC	28	93
TESK1	36	24
TGFBR1	0.5	0.5

TGFBR2	0.15	0.2
TIE1	0.6	0.3
TIE2	1.2	0.05
TLK1	0.05	0.35
TLK2	0	0.2
TNIK	0.2	0.05
TNK1	0	0.05
TNK2	6.6	1.4
TNNI3K	34	17
TRKA	0.1	0.35
TRKB	0	0.1
TRKC	0	0.1
TSSK1B	31	9.1
TTK	0.55	34
ТХК	5	4.6
TYK2(JH1domain-catalytic)	0	2.9
TYK2(JH2domain-pseudokinase)	0.9	0.7
TYRO3	22	25
ULK1	0.1	0
ULK2	0.25	0.15
ULK3	0	0
VEGFR2	1.2	0
WEE1	8.4	3.4
WEE2	26	5.8
YANK2	25	4

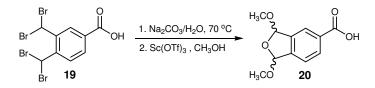
YANK3	24	3.4
YES	2.3	0.7
YSK1	0.25	1.5
YSK4	0.05	0
ZAK	5.2	2
ZAP70	8.2	3.2
		I I

<u>Supplemental</u> Table 2. Representative dissociation constants (K_d) for 40 representative kinases that displayed binding interactions with the kinase inhibitor 3.

Kinase	K _d , nM	Kinase	K _d , nM
ABL1	834	FYN	241
ABL1(T315I)	96	НСК	4990
AKT1	>40000	IGF1R	1480
AURKA	87.5	JAK2(Kin.Dom.2)	93.2
AURKB	199	JNK2	90.3
AURKC	81.8	JNK3	26.1
BRAF(V600E)	>40000	КІТ	852
BTK	3890	KIT(D816V)	102
CDK2	4.62	LCK	870
CDK5	27.6	p38-alpha	11800
EGFR	7830	PDPK1	5220
EPHA3	112	PIM2	1910
ERBB2	>40000	RAF1	>40000
ERBB4	8540	RET	152
ERK2	49.7	SRC	495
FGFR2	294	SYK	200
FGFR3	507	TGFBR1	324
FLT3	41.4	TIE2	825
FLT3(D835H)	20.6	ТТК	153
FLT4	211	VEGFR2	2680

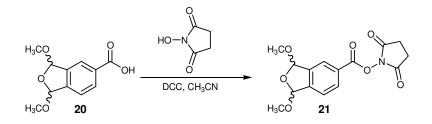
Crystallization and structure determination of c-Src bound to compound 4. Chicken c-Src kinase domain was expressed and purified as described before.³ The c-Src•compound **4** complex was formed in a solution of 250 μ M kinase domain, 375 μ M compound **4**, 5% DMSO, 20 mM Tris (pH 7.5), 100 mM NaCl, 1 mM DTT. Crystals were grown overnight at 20°C using the hanging drop vapor diffusion method (1 μ l protein + 1 μ l mother liquor) in a mother liquor of 0.1 M MES (pH 6.5), 10% glycerol, 25 mM ammonium acetate, 50 mM sodium acetate. Crystals were cryoprotected in mother liquor and 25 % glycerol, frozen, and stored in liquid nitrogen. Diffraction data were collected at the Advanced Light Source (Lawrence Berkeley National Laboratory) beamline 8.3.1. Data were processed in space group P1 by using DENZO and Scalepack.⁴ The structure was solved by molecular replacement by using the kinase domain of human c-Src (PDB code 2SRC)⁵ (residues 260–520) without the C helix (residues 298–310) and the activation loop (residues 400–425) as the template in Phaser,^{6,3} through the ccp4i interface.^{7,4} The structure was built in Coot^{8,5}, and refinement of the structure was straightforward and was conducted by using CNS 1.2. ^{9,10,6,7}

Data Collection	
Space Group	P1
Unit Cell	a = 63.7 Å, b = 74.5 Å, c = 84.7 Å
	$\alpha=89.1^\circ,\beta=89.9^\circ,\gamma=78.4^\circ$
# Molecules/asymmetric unit	4
X-ray source	ALS 8.2.1
Wavelength (Å)	1.00
Resolution (Å)	50-2.35
Ι/ σι	10.0 (4.1)
Completeness (%)	92.8 (93.9)
R_{sym} (%)	6.3 (21.2)
Model Refinement	
Resolution (Å)	2.35
# of reflections R _{work} /R _{free}	48108 / 2572
R _{work} /R _{free}	23.4 / 26.6
Rms deviation from ideality in bond length (Å)	0.006
Rms deviation from ideality in angles (°)	1.3
Number of protein atoms in model	8539
Number of drug atoms in model	116
Number of water molecules in model	220

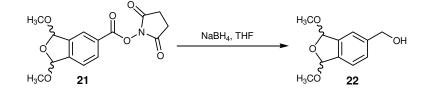

Supplemental Table 3.. Data Collection and Refinement Statistics

Numbers in parentheses refer to the outer resolution shell $(2.35 \text{ \AA} - 2.43 \text{ \AA})$

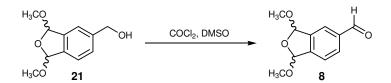
General protocol for cross-linking reactions with AKT1. His_6 -tagged human Akt1, 1 μ M peptide 2, and 20 μ M cross-linker were incubated in 30 μ L of 25 mM HEPES (pH= 6.5), 150 mM NaC1, 2 mM MgCl₂, 20 μ M BME for 20 min at rt. After 20 min, 6 μ L of 6x loading buffer was added to quench the reactions. The sample mixtures (10 μ L) were resolved by 12% SDS-PAGE, followed by SDS-PAGE and direct in gel scanning fluorescence measurements (490 nm excitation band, 520 nm emission band).

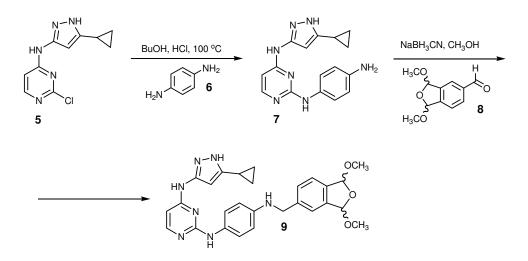


Synthesis of compound 19. Compound **19** was synthesized according to the previously reported method.¹¹ 3,4-dimethylbenzoic acid (11.76 g, 78 mmol), N-Bromosuccinimide (57 g, 322 mmol) and benzoyl peroxide (1.8 g, 7.4 mmol) were refluxed in carbon tetrachloride (170 mL) for 16h. Solids were filtered and washed with Et₂O (2×150 mL) followed by benzene (2×150 mL). Organic filtrates were evaporated, and dissolved in 10% Na₂CO₃ (200 mL). Aqueous phase was washed with CH₂Cl₂ (2×100 mL), acidified to pH 1 with HCl and extracted with EtOAc (2×200 mL). Organic layer was washed with brine (200 mL), dried with MgSO₄ and concentrated *in vacuo* affording tetrabromoacid **19** (27.3 g, 74% yield).

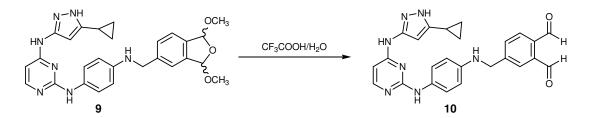


Synthesis of compound 20. Tetrabromoacid **19** (26g, 56 mmol) was dissolved in 10 % Na₂CO₃ (200 mL) and kept at 70 °C for 4h. Reaction mixture was cooled down to 0 °C and acidified with HCl to pH 1 and extracted with EtOAc (2×200 mL). Organic layer washed with brine (200mL),

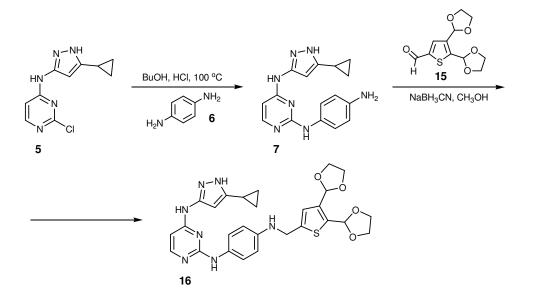

dried with MgSO₄ and concentrated *in vacuo*. Yellow solids were dissolved in 150 mL CH₃OH and treated with Sc(OTf)₃ (1g, 2 mmol) at r.t. overnight. Resulting white solids were filtered affording acid **20** (4.3g) as a 1:1 mixture of isomers, 34% combined yield over two steps. ¹H NMR (400 MHz, DMSO) δ 13.12 (s, 1H), 7.99 (d, 1H, *J* = 8Hz), 7.89 (s, 1H), 7.49 (d, 1H, *J* = 8Hz), 6.05 (s, 2H), 3.31 (s, 3H), 3.30 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 167.4, 143.2, 139.5, 132.9, 131.4, 124.7, 124.0, 105.2, 105.1, 54.8, 54.7. MS calculated for C₁₁H₁₂O₅ 224.07, found 193.05 (- OCH₃)


Synthesis of compound 21. Solution of acid 20 (2g, 8.9 mmol) in CH₃CN (40 mL) was treated with N-hydroxysuccinimide (1.03g, 8.9 mmol) followed by DCC (1.84g, 8.9 mmol). Reaction mixture was stirred for 1h at room temperature and filtered. Filtrates were concentrated *in vacuo*, dissolved in EtOAc (10 mL) and purified (Hexanes : EtOAc = 100:0 → 0:100) affording succinimide ester 21 (2.66g, 93% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, 1H, *J* = 8Hz), 8.13 (s, 1H), 7.51 (d, 1H, *J* = 8Hz), 6.05 (s, 1H), 6.03 (s, 1H), 3.42 (s, 3H), 3.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 161.5, 145.1, 139.7, 132.3, 127.0, 125.9, 124.0, 105.2, 105.1, 54.9, 54.8, 25.8. MS calculated for C₁₅H₁₅NO₇ 321.08, found 290.06 (- OCH₃)

Synthesis of compound 22. Solution of succinimide ester 21 (762 mg, 2.37 mmol) in THF (30 mL) was treated with solid NaBH₄ (0.45 g, 11.85 mmol) and stirred at ambient temperature overnight and then refluxed for 1h. Reaction mixture was quenched with 1N NaOH (20 mL) and refluxed for 1h. Reacton mixture was diluted with water (30 mL) and EtOAc (30 mL). Aqueous phase was extracted with the additional amount of EtOAc (30 mL), combined organic extracts were washed with brine (50 mL), dried with MgSO₄, filtered and concentrated *in vacuo* and purified (Hexanes : EtOAc = 100:0 \rightarrow 25:75) affording alcohol 22 (0.255 g, 51% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (m, 3H), 6.02 (s, 1H), 5.99 (s, 1H), 4.66 (s, 2H), 3.42 (s, 3H), 3.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 139.0, 137.8, 128.6, 123.3, 121.4, 105.59, 105.57, 64.9, 54.6, 54.3. MS calculated for C₁₁H₁₄O₄ 210.09, found 179.07 (- OCH₃).

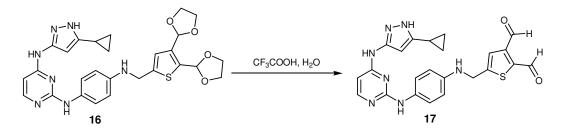


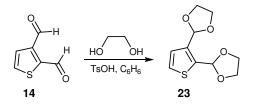
Synthesis of aldehyde 8. Solution of DMSO (0.8g, 10 mmol) in CH₂Cl₂ (50 mL) was cooled down to -78 °C and treated dropwise with (COCl)₂ (0.655g, 5.15 mmol). Stirring continued for 10 min at -78 °C, followed by dropwise addition of solution of alcohol 21 (0.5g, 2.4 mmol) in CH₂Cl₂ (20 mL). After 15 min NEt₃ (0.784g, 7.6 mmol) was added to the reaction mixture and cooling was removed. After 30 min of stirring, reaction mixture was quenched with saturated sodium bicarbonate (40 mL). Organic layers were separated, aqueous extracted with CH₂Cl₂ (30 mL), dried with MgSO₄, filtered, evaporated and purified (Hex:EtOAc = 100:0 \rightarrow 40:60). Aldehyde 8 (330 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 7.93 (d, 1H, *J* = 7.6 Hz), 7.88 (s, 1H), 7.52 (d, 1H, *J* = 7.6 Hz), 6.06 (s, 2H), 3.46 (s, 3H), 3.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 144.5, 139.8, 138.2, 131.5, 124.8, 124.0, 105.3, 105.2, 55.0, 54.8. MS calculated for C₁₁H₁₂O₄ 208.09, found 177.16 (- OCH₃).



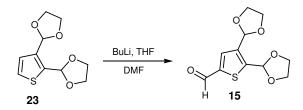
Synthesis of compound 9. (a) Synthesis of intermediate 7. Pyrimidine monochloride 5 (1.6 g, 6.8 mmol) and *p*-phenylenediamine 6 (0.74 g, 6.8 mmol) were dissolved in BuOH (60 mL) followed by the addition of concentrated HCl (0.1 mL). Resulting mixture was kept at 100 °C overnight. Purple precipitates were collected by filtration, washed with 20 mL of BuOH and dried at 50 °C under vacuum, affording amine 7 (1.5 g, 73% yield) which was used in the next step without further purification. MS calculated for $C_{16}H_{17}N_7$ 307.15, found 308.17.

(b) Synthesis of compound **9**. Amine **7** (0.06 g, 195 µmol) and aldehyde **8** (0.035g, 168 µmol) were dissolved in CH₃OH (5mL) and treated with solid NaBH₃CN (0.01g, 168 µmol) and stirred at ambient temperature overnight. Reaction mixture was evaporated and purified (CH₂Cl₂ : CH₃OH = 100:0 \rightarrow 92:8 (1% NEt₃)). Compound **9** (0.064g, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.86 (bs, 1H), 7.80 (m, 1H), 7.67 (bs, 1H), 7.32 (m, 3H), 7.14 (m, 2H), 6.49 (s, 1H), 6.47 (s, 1H), 6.20 (m, 2H), 4.25 (m, 2H), 1.76 (m, 1H), 0.85 (m, 2H), 0.58 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 160.1, 155.6, 144.9, 142.1, 139.1, 137.5, 129.5, 129.2, 129.1, 124.0, 123.3, 121.8, 113.4, 106.7, 105.7, 97.4, 54.9, 54.6, 46.8, 8.9, 8.2. MS calculated for C₂₇H₂₉N₇O₃ 499.23, found 500.14 (M⁺).

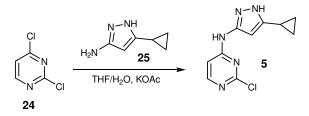

Synthesis of cross-linker 10. Dimethoxyacetal **9** (0.054g, 0.108 mmol) was treated with H₂O (2 mL) and CF₃COOH (2 mL). Resulting mixture was stirred 1h at ambient temperature and evaporated. HPLC purification CH₃CN/H₂O (0.1% TFA) followed by lyophilization gave cross-linker **10** (0.024g, 51% yield). ¹H NMR (400 MHz, DMSO) δ 12.35 (bs, 1H), 11.06 (bs, 1H), 10.47 (s, 1H), 10.40 (s, 1H), 10.25 (bs, 1H), 7.94 (m, 2H), 7.83 (s, 2H), 7.08 (bs, 3H), 6.61 (bs, 3H), 6.30 (bs, 1H), 2.46 (bs, 2H), 1.13 (4H), 0.88 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 193.4, 160.0, 159.6, 159.3, 154.0, 148.0, 146.8, 137.1, 135.8, 132.8, 131.5, 128.7, 126.5, 119.0, 116.0, 113.1, 46.3, 9.2, 8.6. MS calculated for C₂₅H₂₃N₇O₂ 453.19, found 454.11.


Synthesis of compound 16. (a) Synthesis of intermediate 7. Pyrimidine monochloride 5 (1.6 g, 6.8 mmol) and *p*-phenylenediamine 6 (0.74 g, 6.8 mmol) were dissolved in BuOH (60 mL) followed by the addition of concentrated HCl (0.1 mL). Resulting mixture was kept at 100 °C overnight. Purple precipitates were collected by filtration, washed with 20 mL of BuOH and dried

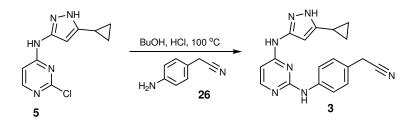
at 50 °C under vacuum, affording amine 7 (1.5 g, 73% yield) which was used in the next step without further purification. MS calculated for $C_{16}H_{17}N_7$ 307.15, found 308.17.


(b) Synthesis of compound **16**. Amine **7** (0.06 g, 195 μ mol) and aldehyde **15** (0.048g, 187 μ mol) were dissolved in CH₃OH (5mL) and treated with solid NaBH₃CN (0.01g, 168 μ mol) and stirred at ambient temperature overnight. Mixture was evaporated and purified (CH₂Cl₂ : CH₃OH - 20:1 (1% NEt₃)). Compound **16** (0.064g, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.13 (bs, 1H), 7.78 (m, 2H), 7.17 (m, 2H), 6.90 (s, 1H), 6.51 (m, 2H), 6.15 (m, 1H), 5.73 (m, 1H), 4.27 (s, 2H), 3.99 (m, 4H), 3.87 (m, 4H), 1.74 (m, 1H), 0.80 (m, 2H), 0.56 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 155.6, 144.3, 143.9, 143.6, 139.1, 138.9, 137.5, 136.1, 130.2, 125.0, 124.3, 123.7, 113.6, 99.1, 98.6, 97.5, 65.5, 65.4, 46.5, 9.0, 8.3. MS calculated for C₂₇H₂₉N₇O₄S 547.2, found 548.07.

Synthesis of cross-linker 17. Compound 16 (0.035g, 64 μ mol) was dissolved in a 1:1 mixture of CH₃CN-H₂O (3 mL) and treated with trifluoroacetic acid (10 μ L, 2 eq.). Reaction mixture was stirred overnight and purified *via* HPLC CH₃CN/H₂O (0.1% TFA) followed by lyophilization to afford cross-linker 17 (13 mg, 45% yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.94 (bs, 1H), 10.38 (s, 1H), 10.34 (s, 1H), 9.54 (bs, 1H), 8.73 (bs, 1H), 7.81 (m, 1H), 7.53 (s, 1H), 7.31 (s, 1H), 7.21 (s, 1H), 6.54 (s, 1H), 6.52 (s, 1H), 4.49 (s, 2H), 1.76 (bs, 1H), 0.83 (m, 2H), 0.59 (m, 2H). MS calculated for C₂₃H₂₁N₇O₂S 459.15, found 459.99.

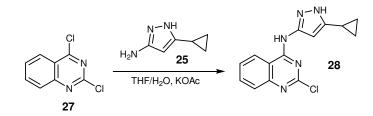


Synthesis of compound 23. 2,3-Bis(1,3-dioxolan-2-yl)thiophene **23** was synthesized according to the previously published procedure.¹² 2,3-Thiophene dicarboxaldehyde **14** (5.35g, 38 mmol), p-toluenesulfonic acid monohydrate (0.1 g,) and ethylene glycol (11.73 g, 190 mmol) were dissolved in benzene (80 mL). Resulting mixture was refluxed for 2h and water was collected in a Dean-Stark trap. Reaction mixture was washed with 5% Na₂CO₃ (100 mL), aqueous layer was extracted once with EtOAc (100 mL), dried with MgSO₄, filtered and evaporated. Purification of the resulting oily residue (Hexanes/EtOAc) afforded 2,3-Bis(1,3-dioxolan-2-yl)thiophene **23** (7g, 85% yield).

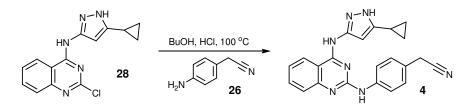


Synthesis of compound 15. 2,3-Bis(1,3-dioxolan-2-yl)thiophene 23 (2.6 g, 11.40 mmol) in THF (50 mL) was cooled down to -78 °C and treated dropwise with BuLi (12.5 mmol). Temperature was raised to 0 °C and reaction mixture was stirred for additional 30 min. After 30 min of stirring, DMF was added (12.5 mmol, 0.971 mL). Cooling was removed and the reaciton mixture stirred at ambient temperature for 30 min followed by quenching with H₂O (50 mL). Layers were separated, and aqueous layer extracted with Et₂O (100 mL). Organic extracts were dried with MgSO₄, filtered and evaporated. Purification of the resulting residue (Hexanes/EtOAc) afforded aldehyde 15 (2.2 g, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 7.74 (s, 1H), 6.32 (s, 1H), 5.98 (s, 1H), 4.10-4.05 (m, 4H), 4.05-3.95 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 183.4,

150.5, 142.2, 138.8, 136.1, 98.8, 98.6, 65.8, 65.5. MS calculated for $C_{11}H_{12}O_5S$ 256.04, found 257.03.



Synthesis of compound 5. 2,4-dichloropyrimidine 24 (3.2 g, 21.6 mmol) and 5-cyclopropyl-2Hpyrazol-3-ylamine 25 (2.65g, 21.5 mmol) were dissolved in a 1:1 mixture of THF and H₂O (140 mL) and treated with KOAc (30 eq., 64 g) and kept at 55 °C for 48h. Layers were separated, organic layer was evaporated, dissolved in CH₂Cl₂ (30 mL) and kept at -20 °C for 3h. Precipitated pyrimidine chloride 5 was collected by filtration. Filtrates were evaporated and dissolved in CH₂Cl₂ (25 mL) and kept at -20 °C for another 3h and filtered. Combined solids were dissolved in CHCl₃ : CH₃OH 10:1 (25 mL) and purified (CHCl₃/CH₃OH), affording compound 5 (46% yield, 2.32g). ¹H NMR (400 MHz, DMSO) δ 12.14 (s, 1H), 10.23 (s, 1H), 8.10 (s, 1H), 1.84 (m, 1H), 0.88 (m, 2H), 0.64 (m, 2H). ¹³C NMR (100 MHz, DMSO) δ 161.4, 160.7, 160.0, 153.9, 148.6, 147.8, 146.8, 8.4, 8.2. MS calculated for C₁₀H₁₀ClN₅ 235.06 (M⁺), found 236.15 (M⁺).



Synthesis of compound 3. Pyrimidine monochloride 5 (0.2 g, 0.85 mmol) and paminobenzonitrile 26 (0.112 g, 0.85 mmol) were dissolved in BuOH (8 mL) followed by the addition of concentrated HCl (0.1 mL). Resulting reaction mixture was kept at 100 °C overnight. Solid precipitates were collected by filtration washed with BuOH (8 mL) and dried under vacuum affording compound 3 (0.23 g, 86% yield). ¹H NMR (400 MHz, DMSO) δ 11.46 (s, 1H), 10.98 (s, 1H), 7.96 (m, 1H), 7.48 (bs, 2H), 7.37 (d, 2H, *J* = 8 Hz), 6.49 (bs, 1H), 6.01 (bs, 1H), 4.03 (s,

2H), 1.82 (m, 1H), 0.89 (m, 2H), 0.52 (bs, 2H). ¹³C NMR (100 MHz, DMSO) δ 160.3, 153.2, 147.6, 145.8, 143.2, 136.5, 129.4, 124.4, 119.8, 100.1, 94.1, 22.6, 8.8, 7.4. MS calculated for C₁₈H₁₇N₇ 331.15, found 332.11.

Synthesis of compound 28. Solution of pyrazoloamine 25 (0.267 g, 2.17 mmol) and 2,4dichloroquinazoline 27 (0.432 g, 2.17 mmol) in EtOH (10 mL) was treated with $EtN(i-Pr)_2$ (3 eq., 1.13 mL) and stirred overnight. Resulting white precipitate was collected by filtration and dried, affording compound 28 (0.476 g, 76% yield). ¹H NMR (400 MHz, DMSO) δ 12.31 (bs, 1H), 10.74 (s, 1H), 8.58 (d, 1H, *J* = 8 Hz), 7.79 (dd, 1H, *J* = 8Hz, 7.2 Hz), 7.65 (d, 1H, *J* = 8.4 Hz), 7.52 (dd, 1H, *J* = 7.6 Hz, 7.6 Hz), 3.31 (bs, 1H), 1.91 (m, 1H), 0.92 (m, 2H), 0.69 (m, 2H). ¹³C NMR (100 MHz, DMSO) δ 159.2, 157.0, 151.4, 147.3, 146.4, 134.6, 127.4, 127.2, 124.3, 114.1, 96.0, 8.4, 7.6. MS calculated for C₁₄H₁₂ClN₅ 285.08, found 286.03.

Synthesis of compound 4. Quinazoline monochloride 28 (0.2 g, 0.7 mmol) and paminobenzonitrile 26 (0.093 g, 0.7 mmol) were dissolved in BuOH (8 mL) followed by the addition of concentrated HCl (0.1 mL). Resulting reaction mixture was kept at 100 °C overnight. Solid precipitates were collected by filtration washed with BuOH (8 mL) and dried under vacuum affording compound 4 (0.197 g, 74% yield). ¹H NMR (400 MHz, DMSO) δ 11.43 (s, 1H), 10.81 (s, 1H), 8.60 (d, 1H, *J* = 8 Hz), 7.83 (dd, 1H, *J* = 8 Hz, 7.6 Hz), 7.57 (d, 1H, *J* = 8.4 Hz), 7.53 (d, 2H, *J* = 8.4 Hz), 7.44 (dd, 1H, *J* = 7.6 Hz, 8 Hz), 7.38 (d, 2H, *J* = 8.4 Hz), 6.14 (bs, 1H), 4.04 (s,

2H), 1.82 (m, 1H), 0.93 (m, 2H), 0.54 (m, 2H). ¹³C NMR (100 MHz, DMSO) δ 159.7, 159.4, 158.8, 152.6, 146.9, 146.2, 136.7, 136.2, 129.4, 125.6, 125.2, 125.0, 119.8, 118.2, 111.0, 96.2, 22.7, 8.5, 7.5. LRMS calculated for C₂₂H₁₉N₇ 381.17, found 382.08.

Full list of sixteen or more authors for the following references in the main text is included:

3(c) Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R.R, Schmidt M.C, Rachidi N, Lee S.J, Mah A.S, Meng L, Stark M.J, Stern D.F, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P.F, Snyder M., *Nature*, **2005**, *438*, 679–684.

21(a) Fabian M.A, Biggs W.H III, Treiber D.K, Atteridge C.E, Azimioara M.D, Benedetti M.G, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ., *Nat. Biotechnol.* **2005**, *23*, 329-336.

21(b) Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP., *Nat. Biotechnol.*, **2008**, *26*, 127-132.

References:

- (1) Maly, D.J.; Allen, J.A.; Shokat, K.M. J. Am. Chem. Soc., 2004, 126, 9160-9161.
- (2) (a) Fabian, M.A. Biggs, W.H III, Treiber, D.K, Atteridge, C.E, Azimioara, M.D, Benedetti, M.G., Carter, T.A., Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ., *Nat. Biotechnol.* 2005, *23*, 329-336. (b) Karaman, M.W. Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP., *Nat. Biotechnol.* 2008, 26, 127-32.
- (3) Seeliger, M. A.; Young, M.; Henderson, M. N.; Pellicena, P.; King, D. S.; Falick, A. M.; Kuriyan, J., *Protein Sci* 2005, 14, (12), 3135-9.
- (4) Otwinowski, Z.; Minor, W., Macromolecular Crystallography, Pt A 1997, 276, 307-326.
- (5) W. Xu, A. Doshi, M. Lei, M.J. Eck and S.C. Harrison, Mol. Cell, 3, 1999, 629-638.
- (6) McCoy, A. J.; Grosse-Kunstleve, R. W.; Storoni, L. C.; Read, R. J., Acta Crystallographica Section D-Biological Crystallography 2005, 61, 458-464.
- (7) Collaborative Computational Project Number 4, The CCP4 suite: programs for protein crystallography, doi:10.1107/S0907444994003112. Acta Crystallographica Section D 1994, 50, (5), 760-763.
- (8) Emsley, P.; Cowtan, K., Acta Crystallographica Section D-Biological Crystallography 2004, 60, 2126-2132.
- (9) Brunger, A. T., Nat Protoc 2007, 2, (11), 2728-33.
- (10) Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L., *Acta Crystallographica Section D-Biological Crystallography* **1998**, 54, 905-921.
- (11) Haris, S.P; Zhang, Y; Bourdonnec, B.-L.; McCurdy, C.R.; Portoghese, P.S., *J.Med.Chem.*, 2007, 3392-3396.
- (12) Laquindanum, J.G.; Katz, H.E.; Lovinger, A.J., JACS, 1998, 120, 664-672.