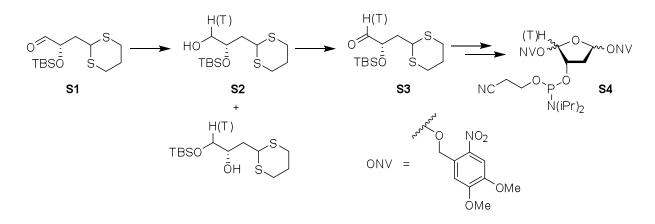
Supporting Information: Irreversible Inhibition of DNA Polymerase β by an Oxidized Abasic Lesion.

Lirui Guan and Marc M. Greenberg*

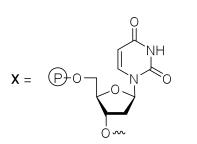

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218

mgreenberg@jhu.edu

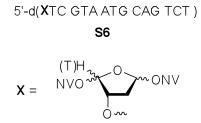
Contents:

- 1. General Methods (S1-S2)
- 2. Experimental Procedures. (S2-S7)
- 3. Supporting Information Figure 1. ¹H NMR spectrum of S2. (S8)
- 4. Supporting Information Figure 2. ¹H NMR spectrum of S3. (S9)
- 5. Supporting Information Figure 3. ¹H NMR spectrum of S4. (S10)
- 6. Supporting Information Figure 4. ³¹P NMR spectrum of S4. (S11)
- 7. Supporting Information Figure 5. ESI-MS of oligonucleotide S6 (S12)
- 8. Supporting Information Figure 6. Active site titration plot of Pol β . (S13)
- 9. Supporting Information Figure 7. Kinetic plot #1 of irreversible inhibition of Pol β by DOB. (S14)
- 10. **Supporting Information Figure 8.** Kinetic plot #2 of irreversible inhibition of Pol β by DOB. (S15)
- 11. **Supporting Information Figure 9.** Kinetic plot #3 of irreversible inhibition of Pol β by DOB. (S16)
- 12. **Supporting Information Figure 10.** Kinetic plot #4 of irreversible inhibition of Pol β by DOB. (S17)
- 13. **Supporting Information Figure 11.** Kinetic plot #5 of irreversible inhibition of Pol β by DOB. (S18)
- 14. **Supporting Information Table 1.** Summary of individual kinetic analyses of irreversible inhibition of Pol β by DOB (1). (S19)
- 15. **Supporting Information Figure 12.** Time course experiment of Pol β lyase reaction with **1** and **2**. (S19)
- 16. Supporting Information Figure 13. Demonstration of completeness of UDG preparation of 1. (S20)

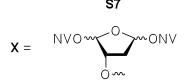
General Methods. Oligonucleotides were synthesized on an Applied Biosystems Incorporated 394 oligonucleotide synthesizer. Oligonucleotide synthesis reagents were purchased from Glen Research (Sterling, VA). All chemicals were purchased from either Sigma-Aldrich or Acros and were used without further purification. ESI-MS analysis was carried out on a LCQ-Deca Ion Trap. All Oligonucleotides were precipitated from 1.25 M ammonium acetate (pH 5.6) prior to MS analysis. NaB³H₄ was from Perkin Elmer. Terminal deoxytransferase and uracil-DNA glycosylase were obtained from New England Biolabs. α -³²P-cordycepin 5'-triphosphate was purchased from Perkin Elmer. C₁₈-Sep-Pak cartridges were obtained from Waters. Quantification of radiolabeled oligonucleotides was carried out using a Molecular Dynamics Phosphorimager 840 equipped with ImageQuant Version 5.1 software. All photolyses of oligonucleotide were carried out in clear eppendorf tubes in a Rayonet photoreactor (RPR-100) fitted with 16 lamps having an output maximum at 350 nm. In all experiments


Phosphoramidite S4. The tritium labeled DOB precursor **S4** was synthesized from compound **S3** using established methods.¹ The ¹H NMR (CDCl₃) and ³¹P NMR (CDCl₃) of **S4** matches previously reported data.¹ The synthesis of **S3** is described below.

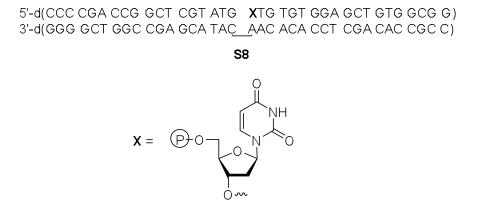
Compound S2. MeOH was refluxed with NaBH₄ while gently bubbling argon through it for 24 h at 30 °C. Sodium was then added and the solution was refluxed for another 24 h. MeOH was distilled and kept over 4 Å molecular sieves. Compound **S1**¹ (200 mg, 0.645 mmol) in distilled MeOH (2 mL) was added to NaB³H₄ (8.2 Ci/mmol, 100 mCi). After stirring at 25 °C for 1 h. NaBH₄ (30 mg, 0.8 mmol) was added. The resulting mixture was stirred at the same


temperature for 0.5 h. The reaction mixture was diluted with diethyl ether and washed with saturated NH₄Cl, followed by brine. The organic phase was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by column chromatography (EtOAc : hexanes = 1 : 4) to give **S2** as a 1:1 mixture of two isomers (192 mg, 95% total). The mixture contained 50 % desired product and 50 % undesired product with silyl migration to the primary alcohol. ¹H NMR (CDCl₃) δ 0.08-0.15 (3s, 6H), 0.91-0.92 (2s, 12H), 1.78-2.05 and 2.47 (m, 4H), 2.12 (m, 1H), 2.86 (m, 4H), 3.46 (m, 1H), 3.63 (m, 1H), 3.98 and 4.31 (m, 1H), 4.07 (m, 1H).

Compound S3. The mixture of **S2** (192 mg, 0.623 mmol), Dess-Martin periodinane (396 mg, 0.94 mmol), and anhydrous K₂CO₃ (138 mg, 1 mmol) in CH₂Cl₂ (6 mL) was stirred at 25 °C for 30 min. A mixture of saturated Na₂S₂O₃ and saturated NaHCO₃ (1:4) was added to the reaction mixture and stirred vigorously for 5 min. The organic phase was washed with saturated NaHCO₃, followed by brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography (EtOAc : hexanes = 1 : 6) to give **S3** (91.8 mg, 48%, 554 Bq/nmol). ¹H NMR (CDCl₃) δ 0.11 (s, 6H), 0.95 (s, 12H), 1.97-2.08 (m, 2H), 2.21 (m, 2H), 2.77-2.80 (m, 6H), 4.08 (m, 1H), 4.26 (m, 1H), 9.68 (s, 1H).



Synthesis of Oligonucleotide S5 containing AP Lesion Precursor. Standard synthesis cycles (25 s coupling, 5 s capping with acetic anhydride, 15 s oxidation with 1 M iodine in THF, 95 s detritylation with 3% TCA in methylene chloride) were used to incorporate phosphoramidites including all four native phosphoramidites, 2'-deoxyuridine phosphoramidite and the chemical phosphorylation reagent (Glen Research). After AMA (conc. aq. ammonia : methylamine v/v 1:1) deprotection (65 °C, 10 min), the oligonucleotide was purified by 20% denaturing PAGE.



Synthesis of Oligonucleotide (S6) Containing DOB Lesion Precursor. Standard synthesis cycles (25 s coupling, 5 s capping with acetic anhydride, 15 s oxidation with 0.1 M iodine in THF, 95 s detritylation with 3% TCA in methylene chloride) were used prior to incorporating the lesion precursor. The phosphoramidite of the tritium labeled lesion (S4) was incorporated manually with 5 min coupling, 25 s capping, 40 s oxidation using the same synthesis reagents. After AMA (conc. aq. ammonia : methylamine v/v 1:1) deprotection (65 °C, 10 min), the oligonucleotide was purified by 20% denaturing PAGE.

5'-d(TAA TGG CTA ACG CAA $\mathbf X$ TC GTA ATG CAG TCT) 3'-d(ATT ACC GAT TGC GTT _AAG CAT TAC GTC AGA)

The preparation of ternary complex 1. Freshly hybridized ternary complex 3'-³²P-S7 (2 μ M) in HEPES buffer (50 mM, 100 mM NaCl, pH 7.2) was photolyzed for 60 min at 25 °C. The resulting solution of 1 was used immediately. Passage of the photolyzed ternary complex through Sephadex G-25 prior to incubation with Pol β had not effect on inhibition.

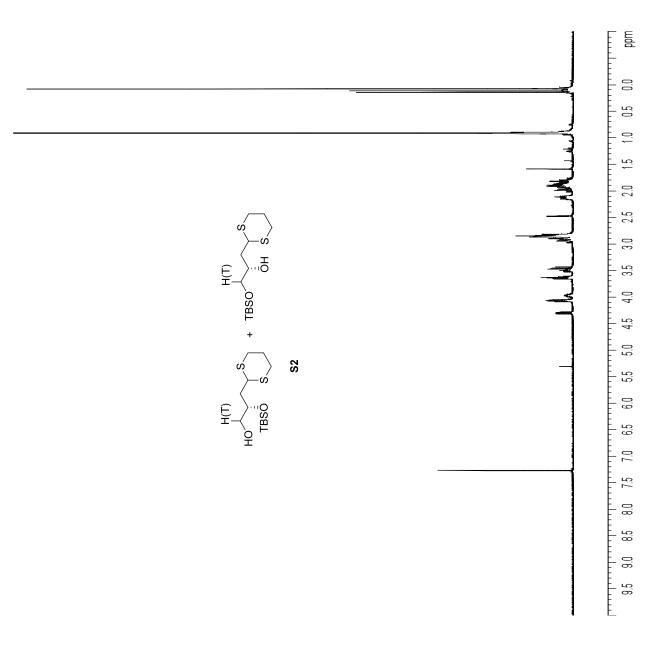
The preparation of ternary complex 2. The hybridized ternary complex $3'-{}^{32}P-S8$ (1 μ M) was incubated with uracil-DNA glycosylase (UDG) (155 units) in UDG reaction buffer (100 μ L, 20 mM Tris-HCl, pH 8.0, 1 mM DTT, 1 mM EDTA) at 37 °C for 10 min. The resulting solution of **2** was used immediately without further purification.

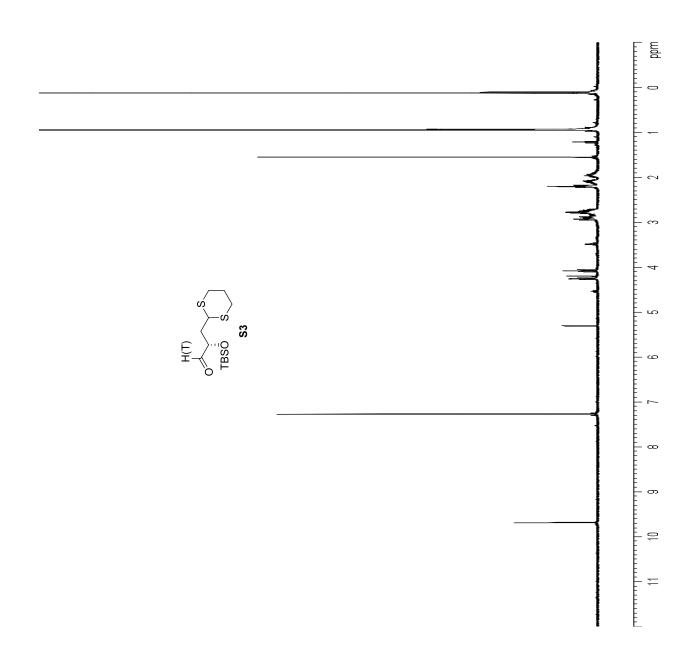
Pol β active site titration essay. Freshly prepared ternary 3'-³²P-2 (500 nM) was incubated with Pol β (5 nM, 10 nM and 15 nM) in HEPES buffer (50 mM, pH 7.4, containing 5 mM MgCl₂) at 25 °C for 20 min. Aliquots (5 µL) was removed at the indicated time and quenched with NaBH₄ (2 µL, 500 mM) at 25 °C. for 1 h. The samples were mixed with formamide loading buffer (15 µL, 90%, 10 mM EDTA). An aliquot of the mixture (5 µL) was loaded on to a 20% denaturing polyacrylamide gel and the product was analyzed using a phosphorimager. The amount of product versus time was fit using the equation: $y = A_0*(1 - exp(-a*x)) + b*x$. The percentage of active Pol β (48.3 ± 3.8 %) was calculated from $A_0/[Pol β]$.

Pol β lyase reaction with 1 and 2. The freshly prepared ternary complex 3'-³²P-1 or 3'-³²P-2

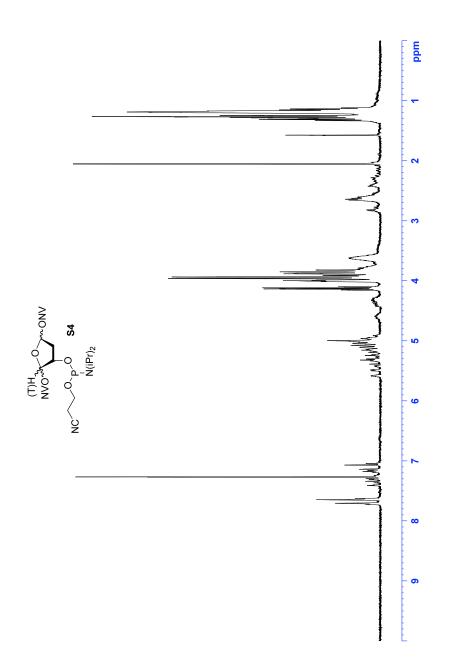
(200 nM) was incubated with Pol β (5 nM) in HEPES buffer (200 μ L, 50 mM, pH 7.4, containing 5 mM MgCl₂) at 37 °C. Aliquots (5 μ L) were removed at the indicated times and quenched with NaBH₄ (2 μ L, 500 mM) at 25 °C for 1 h. The samples were mixed with formamide loading buffer (15 μ L, 90%, 10 mM EDTA). An aliquot of the mixture (5 μ L) was loaded on to a 20% denaturing polyacrylamide gel and the product was analyzed using a phosphorimager.

Stepwise Inhibition of Pol β lyase reaction by DOB. Freshly prepared ternary complex 3'-³²P-1 (200 nM) was incubated with Pol β (5 nM) in HEPES buffer (200 µL, 50 mM, pH 7.4, containing 5 mM MgCl₂) at 37 °C. Aliquots (5 µL) were removed at the indicated times and quenched with NaBH₄ (2 µL, 500 mM) at 25 °C for 1 h. After 10 min, Pol β (10 µL, 100 nM, 1 pmol) was added to the solution. Aliquots (5 µL) were removed at the indicated times and quenched with NaBH₄. After another 10 min, Pol β (10 µL, 100 nM, 1 pmol) was added to the solution. Aliquots (5 µL) were removed at the indicated times and quenched with NaBH₄. After another 10 min, Pol β (10 µL, 100 nM, 1 pmol) was added to the solution. Aliquots (5 µL) were removed at the indicated times and quenched with NaBH₄. The samples were mixed with formamide loading buffer (15 µL, 90%, 10 mM EDTA). An aliquot of the mixture (5 µL) was loaded on to a 20% denaturing polyacrylamide gel and the product was analyzed using a phosphorimager.

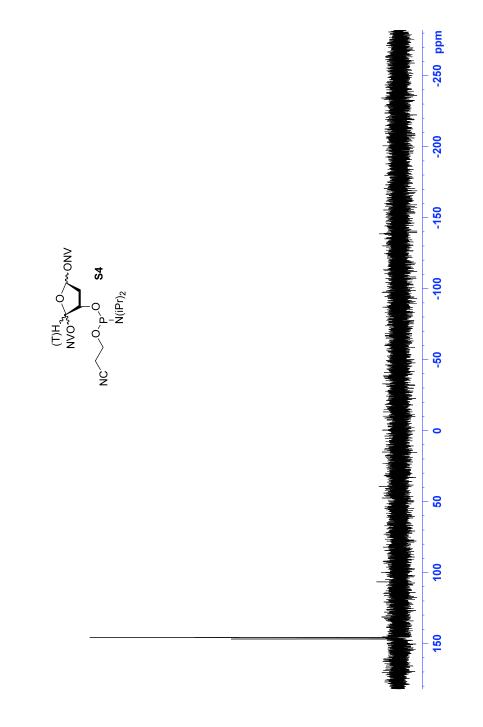

Measurement of IC₅₀ of DOB. Freshly prepared ternary complex 1 (0, 10 nM, 20 nM, 40 nM, 60 nM, 100 nM, 200 nM, 400 nM, 600 nM, 1 μ M) was incubated with Pol β (50 nM) in HEPES buffer (40 μ L, 50 mM, pH 7.4, containing 5 mM MgCl₂) at 25 °C for 3 min. Aliquots (5 μ L) were added to 3'-³²P-2 in HEPES buffer (95 μ L, 50 mM, pH 7.4, containing 5 mM MgCl₂). The resulting solutions (100 μ L, Pol β : 2.5 nM; 3'-³²P-2: 100 nM; 1: 0, 0.5 nM, 1 nM, 2 nM, 3 nM, 5 nM, 10 nM, 20 nM, 30 nM, 50 nM) were incubated at 37 °C for 10 min. After 10 min, the solution was quenched with NaBH₄ (10 μ L, 500 mM) at 25 °C for 1 h. An aliquot of the reaction

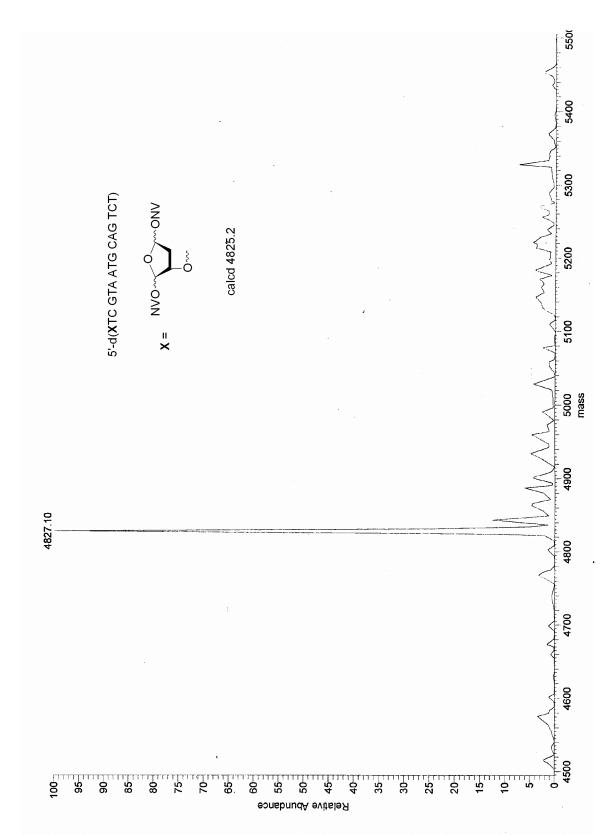

solution (1 μ L) was mixed with formamide loading buffer (4 μ L, 90%, 10 mM EDTA) and loaded on to a 20% denaturing polyacrylamide gel. The product was analyzed using a phosphorimager.

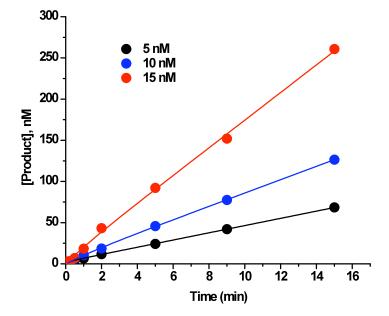
Time-dependent irreversible inhibition kinetics of Pol β. Freshly prepared ternary complex 1 with various concentrations (0 nM, 7.5 nM, 15 nM, 30 nM, 45 nM, 60 nM) were incubated with $3'_{-}^{32}$ P-2 (500 nM) and Pol β (7.5 nM) in HEPES buffer (100 µL, 50 mM, pH 7.4, containing 5 mM MgCl₂) at 37 °C. Aliquots (10 µL) were removed at the indicated times and quenched with NaBH₄ (2 µL, 500 mM) at 25 °C for 1 h. The samples were mixed with formamide loading buffer (20 µL, 90%, 10 mM EDTA). An aliquot of the mixture (5 µL) was loaded on to a 20% denaturing polyacrylamide gel and the product was analyzed using a phosphorimager.

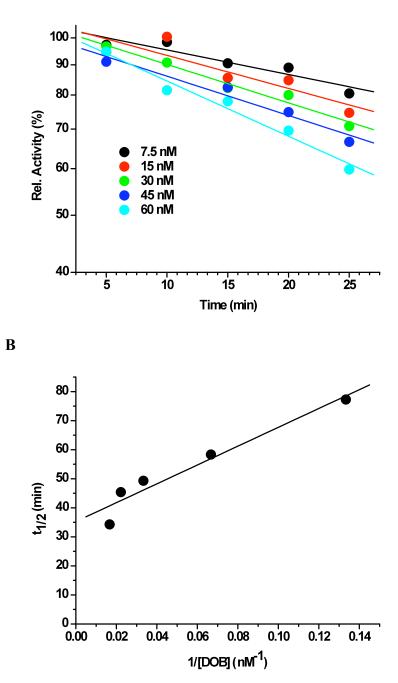

Phenol extraction assay. Ternary complex 3 H-1, ${}^{3'}{}^{-3^{2}}$ P-1 or ${}^{3'}{}^{-2}$ (125 nM) was incubated with Pol β (1.25 μ M) or BSA (0.8 μ M) in HEPES buffer (200 μ L, 50 mM, pH 7.4, containing 5 mM MgCl₂) at 37 °C for 2 h. Calf thymus DNA (1 μ L, 10 μ g) was then added and the resulting solution was incubated at 37 °C for 15 min. The solution was extracted with buffer-saturated (Tris-HCl, pH 7.5) phenol (200 μ L) three times. The phenol layers were combined. The phenol layer and aqueous layer were mixed separately with liquid scintillation cocktail (16 mL) and the 3 H or 32 P in each sample was counted using a liquid scintillation counter.

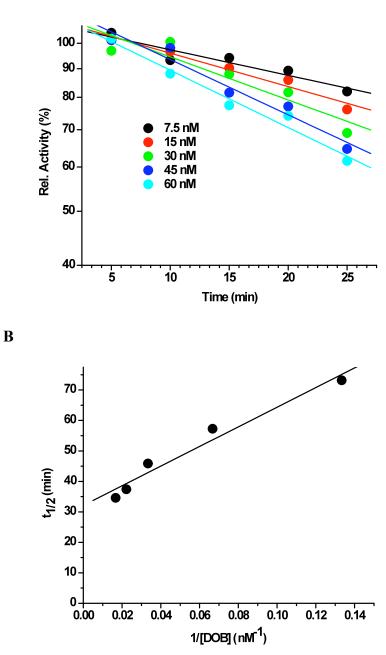
1. Kodama, T.; Greenberg, M. M. J. Org. Chem. 2005, 70, 9916-9924.

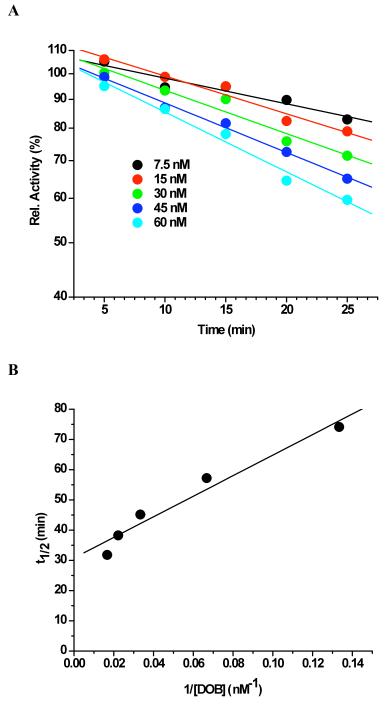


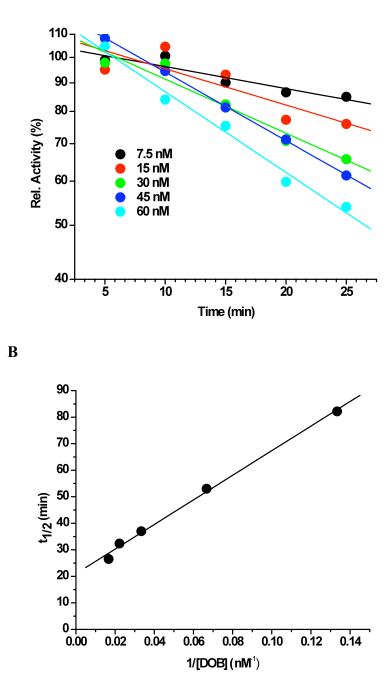

Supporting Information Figure 2. ¹H NMR spectrum of S3.


Supporting Information Figure 3. ¹H NMR spectrum of S4.

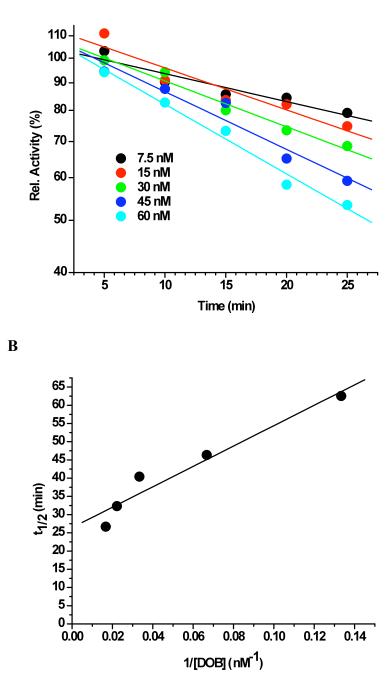

Supporting Information Figure 4. ³¹P NMR spectrum of S4.


Supporting Information Figure 5. ESI-MS of oligonucleotide containing DOB precursor.


Supporting Information Figure 6. Active site titration of Pol β (5 nM, 10 nM, 15 nM) using 3'-³²P-2 (500 nM) as substrate.


Supporting Information Figure 7. Kinetic analysis #1 of irreversible inhibition of Pol β by DOB (1). (A) Effect of increasing [DOB] (1) on Pol β (7.5 nM) lyase reaction of AP (3'-³²P-2, 500 nM). (B) Half-life of Pol β inactivation as a function of [DOB].

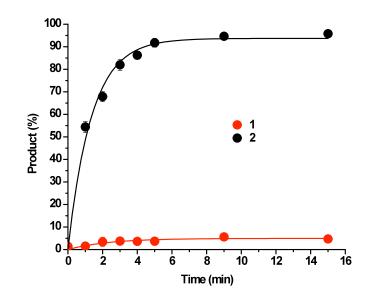
Supporting Information Figure 8. Kinetic analysis #2 of irreversible inhibition of Pol β by DOB (1). (A) Effect of increasing [DOB] (1) on Pol β (7.5 nM) lyase reaction of AP (3'-³²P-2, 500 nM). (B) Half-life of Pol β inactivation as a function of [DOB].



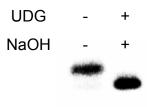
Supporting Information Figure 9. Kinetic analysis #3 of irreversible inhibition of Pol β by DOB (1). (A) Effect of increasing [DOB] (1) on Pol β (7.5 nM) lyase reaction of AP (3'-³²P-2, 500 nM). (B) Half-life of Pol β inactivation as a function of [DOB].

Supporting Information Figure 10. Kinetic analysis #4 of irreversible inhibition of Pol β by DOB (1). (A) Effect of increasing [DOB] (1) on Pol β (7.5 nM) lyase reaction of AP (3'-³²P-2, 500 nM). (B) Half-life of Pol β inactivation as a function of [DOB].

Α



Supporting Information Figure 11. Kinetic analysis #5 of irreversible inhibition of Pol β by DOB (1). (A) Effect of increasing [DOB] (1) on Pol β (7.5 nM) lyase reaction of AP (3'-³²P-2, 500 nM). (B) Half-life of Pol β inactivation as a function of [DOB].


Supporting Information Table 1. Summary of individual kinetic analyses of irreversible inhibition of Pol β by DOB (1).

Experiment	1	2	3	4	5	6
	(Figure S7)	(Figure S8)	(Figure S9)	(Figure S10)	(Figure S11)	(Figure 2)*
K _I (nM)	9.2	10.0	9.1	22.1	10.6	15.7
k_{inact} (s ⁻¹)	3.3×10^{-4}	3.6×10^{-4}	3.8×10^{-4}	5.5×10^{-4}	4.4×10^{-4}	5.0×10^{-4}
$K_{\rm I} = 12.8 \pm 5.2 \text{ nM}, \ k_{\rm inact} = 4.2 \pm 0.9 \times 10^{-4} \text{ s}^{-1}.$						

*See main text for this kinetic plot.

Supporting Information Figure 12. Time course experiment of Pol β (5 nM) lyase reaction with DOB (3'-³²P-1, 200 nM) and AP (3'-³²P-2, 200 nM).

Supporting Information Figure 13. Demonstration of completeness of UDG preparation of **1**. $3'-{}^{32}P-1$ was treated with UDG and then NaOH.