Residue/Atom	Residue/Atom	Distance (Å)
TGF-81	TBRII	
Hydrogen bonds and salt bridges		
Arg 25 Nh1	Glu 119 Oɛ1	3.5
Arg 25 Nh2	Glu 119 Oc2	2.6
His 34 Ne2	Ser 49 O	2.8
Tvr 91 O	Ile 53 N	2.8
Gly 93 N	Ile 53 O	2.9
Gly 93 O	Ser 52 Oy	3.2
Arg 94 Nh1	Asp 32 Οδ1	2.6
Arg 94 Ne	Asp 32 Οδ2	2.9
Hydrophobic contacts ^a		
Tyr 91	Ile 50, Ser 52	
Arg 94, Gly 93	Phe 30	
TGF-β1 (A)	Τβ RI	
Hydrophobic contacts	•	
Trp 30	Phe 60	
Trp 32, Tyr 90	Pro 55	
Leu 101	Ile 54	
TGF-β1 (B)	TβRI	
Hydrogen bonds		
Tyr 6 OH	His 15 Ne2	3.2
Hydrophobic contacts		
Ala 1, Leu 2,Tyr 6	Leu 16	
Asn 5	Lys 19	
Tyr 6	His 15, Leu 16	
lle 51	Phe 31	
Gln 57	Ile 54	
Lys 60	Val 61	
	TOD	
ΤβRΠ	ΤβRΙ	
Hydrophobic contacts	a a	
Ala 21	Cys 77	
Val 22	Leu 29, Cys 76, Cys 77, Asn 78	
Prie 24	Leu 29, Pro 59	
Pro 25	Arg 58	
Leu 2/	Arg 58	
110.55	Alg Jo	

^a Carbon-carbon contacts \leq 4.0 Å

FIGURE LEGENDS

Supplemental figure 1. Structural superposition demonstrating overall similar manner of complex assembly observed with TGF- β 1 and $-\beta$ 3. (A) Overlay of TGF- β 1 and $-\beta$ 3 ternary complex structures. Structures were superimposed using the full ligand dimer and the corresponding bound T β RII. Components of the TGF- β 1 ternary complex are colored (TGF- β 1_A-monomer – light blue, TGF- β 1_B-monomer – dark blue, T β RI – red, T β RII – yellow) whereas those of the TGF- β 3 ternary complex are grey. (B) Overlay of T β RI from the TGF- β 1 and TGF- β 3 ternary complexes (red and grey, respectively) showing that the structures are overall very similar (in spite of its somewhat different positioning in the two ternary complexes; Fig 1C).

Supplemental figure 2. SPR equilibrium analysis of the interaction between T β RII and TGF- β 1, TGF- β 2 and TGF- β 3 and between T β RI and TGF- β 2 and TGF- β 3. (A-C) Sensorgrams and binding isotherms obtained as T β RII was injected. Traces correspond to triplicate measurements of 2-fold serial dilutions of the receptor over the ranges shown. Surface densities were 185, 339, and 165 resonance units (RU) for TGF- β 1 (A), - β 2 (B), and - β 3 (C), respectively. Binding isotherms correspond to plots of the response at equilibrium as a function of receptor concentration, which were fit to a hyperbolic equation using Scrubber 2 software. (D-E) Sensorgrams and binding isotherms obtained as T β RI was injected. Traces correspond to triplicate measurements of 2-fold serial dilutions of the receptor over the ranges shown. Surface densities were 339 and 451 resonance units (RU) for TGF- β 2 (D), and - β 3 (E), respectively. Data is not shown for TGF- β 1 since the maximum binding observed (8 RU at 16 μ M on a 686RU surface) was too weak to permit an equilibrium analysis.

Supplemental Figure 1

Supplemental Figure 2