Text S1. A model of plasticity, evolution and extinction in a

changing environment

We model the evolution and growth of a population in a constantly changing
environment as in Lynch and Lande’s model [1], but with partially adaptive
phenotypic plasticity. Time t is measured in arbitrary units (e.g., years or days),
and we assume discrete non-overlapping generations, with generation time 7. An
environmental variable € changes at a constant rate in time, ¢ = nt. Adaptation to
the changing environment is mediated by a quantitative trait z, which exhibits
phenotypic plasticity modelled using linear reaction norms. We focus on a plastic
trait with determinate growth, for which the adult phenotype is determined by
the environment at a critical stage of development a fraction 7 of a generation
before selection acting only on adults [2,3]. The phenotype of an adult just before
selection at generation n is z=a+ bn[T(n - 1)]+ e. Reaction norm elevation a is
the breeding value of a genotype in an arbitrary reference environment (chosen
as 0 without loss of generality), and the slope b quantifies its plasticity. The

residual component of phenotypic variation e is assumed to be normally
distributed with mean 0 and constant variance af. We also suppose that
breeding values are normally distributed with constant variance aaz, but that

plasticity has no genetic variance, so b is constant and cannot evolve. The

phenotype distribution p(z) is thus normal with mean z and constant variance
o’ = O'az + 062. The mean phenotype before selection at generation n is
z=a+bnT(n-"1)].

Plasticity is assumed to entail a fitness cost, regardless of the expressed

value of the trait. This is modelled using Gaussian stabilizing selection towards



lower absolute plasticity, as in previous models [4,5]. Apart (and independent)
from the cost of plasticity, the phenotypic trait is also under Gaussian stabilizing
selection for an optimum 6 that changes linearly with the environment, 6 = Be,
where B is the environmental sensitivity of phenotypic selection. The expected

lifetime fitness of individuals with phenotype z is thus
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where o? and w, are the widths of the fitness functions on the trait and on
plasticity, respectively. We focus on partially adaptive plasticity, that is on cases
where 0 <b <B.

We assume density-independent population growth, such that the
recursion for the population size over one generation is N'=WN, where

W = fW(z)p(z)dz is the mean fitness in the population at generation n and N' is

the population size at generation n+1. The population is decreasing in size if
W<l (or InW <0). At generation n, the growth rate of log population size per
unit time is
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where y = 1/(a)z2 +0?) is the strength of stabilizing selection and
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is the maximum growth rate of the population when the mean phenotype is at
the optimum. This growth rate is reduced both by the phenotypic variance of the
trait and by the cost of plasticity.

The change in the mean phenotype per unit time is
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where Aa is the per-generation change in the mean breeding value caused by
natural selection on the trait, and bnT is the plastic phenotypic change between
generations. The genetic change in mean phenotype per generation is the

product of the selection gradient and the genetic variance of the trait [6],
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Partially adaptive plasticity b causes the mean phenotype to be closer to the
optimum (since z=a+bnT(n-1) and 6 = BnTn), thus reducing the strength of
directional selection on the trait and thereby also reducing the genetic response
to selection. However the smaller genetic change in the trait is counterbalanced
by the plastic phenotypic response in eq. (A3).

With the mean phenotypic initially at the optimum, it can be shown that
the deviation of the mean phenotype from the optimum increases before
reaching a constant value (phenotypic lag). The magnitude of the phenotypic lag
determines population growth rate and whether the population can persist in
the changing environment [1]. The stationary state of the system occurs when
the rate of change in the trait equals the rate of change in the optimum
phenotype, Az/T = Br). Combining this condition with equations (A3) and (A4)
yields the equilibrium phenotypic lag
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and (from eq. A2) to the equilibrium growth rate of the population
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Solving req = 0 for n produces eq. (1) in Box 1 for the critical rate of
environmental change 7. with constant phenotypic plasticity.

The cost of plasticity and the plastic phenotypic response have opposing
effects on the critical rate of environmental change 7. The critical rate 7. is
maximized for an intermediate value of = b/B, the ratio of phenotypic plasticity
to the environmental sensitivity of selection. From eqs. (A2b) and (A3), and

assuming weak selection (a)z2 >> 07), the optimum relative plasticity is
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where sb=Bz/(2a)Z) is a scaled intensity of the cost of plasticity, and

Sum =InW,_ —(y0®)/2 is the threshold for this scaled cost of plasticity above

which perfect plasticity (a = 1) is optimal.
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