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Filtering. The time series of each channel, yj(t), of the single-
trial MEEG, Y(t), with nc channels j = 1. . .nc (here, nc = 366),
was filtered into 36 frequency bands with a bank of Morlet
wavelets h(t,f) that had roughly log-linearly spaced center fre-
quencies, f (f= 3. . .90 Hz) (Fig. S1C). The complex-filtered signal
yF(t,f) was given by yF(t,f) = y(t) * h(t,f), where * denotes con-
volution and hðt; f Þ ¼ Aexpð− t2=2σ2t Þexpð2iπftÞ. The time do-
main SD, σt, of the wavelet is σt ¼ m=2πf , where the parameter
m (m = 5) defines the compromise between time and frequency
resolution.

Forward and Inverse Modeling. The FreeSurfer image analysis
suite, which is documented and freely available online (http://
surfer.nmr.mgh.harvard.edu/), was used for automatic volu-
metric segmentation of the MRI data and for the reconstruction,
flattening, and automatic labeling and parcellation of cortical
surfaces (1–7) (Fig. S1D). The MNE software (http://www.nmr.
mgh.harvard.edu/martinos/userInfo/data/sofMNE.php) was used
for creating three-layer boundary element conductivity models
and cortically constrained source models for forward and inverse
modeling (Fig. S1E). The MNE was also used for MEEG-MRI
colocalization and for the preparation of the forward and inverse
operators (8–11) (Fig. S1 E and F). Individual subjects’ source
models were based on tessellated cortical surfaces on which the
dipoles were normal to the surface and had a 7-mm dipole-to-di-
pole separation. The sourcemodels had a total ofnd=6,000–8,500
dipoles (source-model vertices) in the two cerebral hemispheres.
MEEG sensor signals, Y, are linearly related to the current

strengths of the nd source dipoles, X = [xk], k = 1. . .nd, such that
Y(t)= ΓX(t)+N(t), where N denotes noise and Γ is the lead field
matrix (i.e., the forward operator that relates the source dipole
strengths to the sensor level data jointly acquired by MEG planar
gradiometers, MEG magnetometers, and EEG electrodes). We
obtained X(t) from measured Y(t) by using a minimum norm es-
timator (8), such that X(t) = MY(t) = RΓT(ΓRΓT + λ2χ)−1Y(t),
where M is the inverse operator, λ2 is a regularization parameter,
R is the source covariance matrix, and χ is the noise covariance
matrix. We used λ2 = 0.05 and a multiple of the identity matrix
as R. The inverse operator, M, for each wavelet frequency was
prepared with noise covariance matrices computed across the
real parts of filtered single-trial prestimulus baseline windows
(Fig. S1G). Frequency-specific complex inverse solutions, XF =
[xF,k], were obtained from the inverse estimates of the real (YF,RE)
and imaginary (YF,IM) parts of the filtered MEEG data, YF, such
that XF = MF YF,RE(t) + i M YF,IM(t), where i is the imaginary
unit (Fig. S1H).

Surface Parcellation. Two parcellations of the source model were
used in the quantification of interareal phase synchrony. Here, the
term “parcellation”means a set of patches, each of which defines
a set of source model vertices. The first one, a cluster parcella-
tion, PCL, with 365 patches, was obtained with a mean linkage
clustering algorithm that yielded maximally independent cortical
patches in individual anatomy and was used to compute the
within-subject phase synchrony estimates. The second one, an
anatomical landmark parcellation, PAN, was based on automatic
cortical labeling (5) and was used for group statistics and visu-
alization.
Clustering parcellation. Source-space interaction mapping would be
directly achievable through a computation of source model
vertex-by-vertex (nd × nd) phase synchrony matrices, but they

would be highly redundant and computationally cumbersome.
Hence, after the inverse modeling and before the phase syn-
chrony estimation, we collapsed the 6,000–8,500 time series of the
source vertices into 365 time series of the cortical patches (Fig.
S1I). The collapsed inverse solution, XF,P = [xF,P,l], l = 1. . .np, is
given by XF,P = Π(XF, P), where Π is a collapse operator; P is the
parcellation, P= [pl]; and np is the number of patches, pl, in P. We
defined Π so that the complex time series of a patch’s phase is
given by xF,P,l(t,f) = ρl/|ρl|, where ρl = ql

−1 Σu xF,u, u = 1. . .ql are
the indices of the source vertices in patch pl and ql is the number
of source vertices in that patch. Within-subject phase synchrony
analysis was obtained with a PCL that maximized the separability
of cortical sources in individual anatomy. The parcellation was
based on an estimate of artifactual synchrony that was obtained
by simulating white noise in each source model vertex, forward
modeling it to achieve a virtual MEEG recording, Yv; filtering and
inverse modeling the data to obtain XF,v; and then estimating
from XF,v across 5,000 independent samples the complete pair-
wise source vertex-by-vertex phase synchrony matrix, Iv (Fig. S1J).
This “artefact synchrony matrix” thus quantifies the artifactual
correlations caused by the MEEG measurement as well as those
arising in the inverse modeling. A total of 365 cortical patches
were obtained with mean linkage clustering of Iv, such that ver-
tices, or clusters of vertices, with the strongest pair-wise phase
synchrony were clustered together. For each clustering step,
parcellation was applied to the 5,000-sample XF,v and the artifact
synchrony matrix was recomputed. This process was iterated until
365 source clusters remained (Fig. S1K).
Neuroanatomical parcellation. The FreeSurfer software parcellates
and labels the cortical surface into 156 patches in two hemi-
spheres based on gyral and sulcal structure and neuroanatomical
convention (see above; Fig. S1D). These patches were the basis
of our group level statistics and visualization. To exclude the
possibility that the size variability of these patch-biased network
analyses, we further split the largest and merged the smallest
patches to obtain an anatomical parcellation, PAN (Fig. S1L).
We first iteratively searched for patches that had the largest size
in the subject population and split them along the axis (anterior-
posterior, lateral-medial, ventral-dorsal) that had the largest
mean variance (Fig. S1L). This procedure was used to obtain a
total of 240 patches in the two hemispheres with split directions
that were identical for every subject. We then iteratively merged
smaller patches with their neighbors to obtain a collection of 106
patches in two hemispheres, with 63 ± 23 source space vertices
per patch (mean ± SD). PAN thus retains the individual ana-
tomical accuracy and yet provides a common basis for statistics
across subjects.

Estimation of Interareal Interactions in Source Space. We used the
collapsed inverse estimates, [XF,P,r(t,f)], of single trials, r (r =
2. . .nt), for mapping cortex-wide interareal interactions, such
that I = S([XF,P,r]), where I [I = I(t,f)] is an np × np-sized matrix
of interaction strengths, S is the interaction operator, and nt
denotes the total number of trials in the experimental condition
(Fig. S1M). In this study, neuronal interactions were indexed by
pair-wise phase synchrony of each cortical patch with every other
patch. Two signals are said to be phase-synchronized if their
phase difference distribution is nonrandom. Phase synchrony
between a pair of patches, pa and pb, was quantified across trials
by using a PLV, PLV(t,f), that was given by PLV = (nt − 1)−1｜Σr
(xF,P,a,r x*F,P,b,r)｜, where Σr denotes the sum across trials and x* is
the complex conjugate of x. The interaction matrix, I, for a given
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parcellation, P, is then obtained by computing PLV for each pair
(a, b), a = 1. . .np, b = 1. . .np, which is also conveniently given by
the outer product I = (nt−1)−1｜Σr(XF,P,r ⊗ X*F,P,r)｜. An estimate,
Ievk, of phase synchrony artifactually caused by signal compo-
nents that were phase-locked to the sample stimulus, “evoked
synchrony,” was estimated as for I above but by using a trial-
shifted PLV that was given by PLVevk = (nt−1)−1｜Σ (xF,P,a,r x*F,P,
b,r−1)｜. I and Ievk were obtained for each subject, condition, time
window (width = 300 ms, overlap = 145 ms), and wavelet center
frequency (36 frequencies from 3 to 90 Hz). One wavelet with a
center frequency at around 50 Hz was excluded from the anal-
yses because of putative mains interference.

Group Statistics. In addition to the estimates of evoked phase
synchrony, Ievk, we obtained estimates of the average level of
phase synchrony in the presample-stimulus baseline, Ibl, and
used these to remove artifactual and task-irrelevant components
from the individual subject’s interaction strength matrices, I(t,f).
This correction was given by Icorr(t,f) = I(t,f) − max[Ibl(f), Ievk(t,
f)], where Ibl(f) is the mean of I(t,f) across the baseline period
(time windows with centers from −450 to −140 ms) and the max-
operation is the maximum of Ibl(f) or Ievk(t,f) separately for each
PLV(t,f). Thus, the Icorr(t,f) values were biased neither by base-
line nor by stimulus-locked activity. The baseline correction also
intrinsically removes possible artifactual pair-wise synchrony
arising from the MEEG recording or inverse modeling. In-
dividual subjects’ corrected interaction matrices, Icorr(t,f), which
were obtained in PCL, were then morphed by patch area-
weighted averaging into those individuals’ PANs to obtain IAN,

corr(t,f) for usage in group statistics.
The statistical interaction matrix, IS(t,f) (Fig. S1N), contains

the significance (P value) of each pair-wise interaction in each
condition. We obtained IS(t,f) from the IAN,corr(t,f) of all subjects
by applying a statistical test separately for each pair-wise PLV for
each t and f. In the average condition, IAN,corr(t,f) values were
tested against a null hypothesis of PLV ≤ 0 using the Wilcoxon
signed rank test. For each subject, the IAN,corr(t,f) was obtained
by averaging the six Icorr(t,f) values that were computed sepa-
rately with an equal number of trials corresponding to LM (LM =
1, 2, 3, 4, 5, and 6). In the load condition, IAN,corr(t,f) values were
obtained separately and with an equal number of trials for each
LM = 1, 2, 3, 4, 5, and 6, and were then tested across subjects
using the Spearman’s rank correlation test against a null hy-
pothesis that PLV(LM) is uncorrelated or negatively correlated
with LM. The interactions predicting individual behavioral
memory capacity were identified so that we obtained the Icorr(t,f)
for each LM = 1, 2, 3, 4, 5, and 6 and searched the kL that gave
the best least-squares fit of the capacity function Fcap(LM,g,kL),
where g indicates gain parameter, with PLV(LM). These best-
fitting kL values were then tested across subjects with the
Spearman’s rank correlation test against the null hypothesis that
kL values were uncorrelated or negatively correlated with the
subjects’ individual behavioral capacity kP (see above). Fcap(LM,
g,kL) was obtained for each LM (1. . .6) so that the value of Fcap
increased linearly between 1 ≤ LM ≤ kL and remained at the
maximum level from kL ≤ LM ≤ 6. During the least-squares fit-
ting, g was used for scaling Fcap.

Graph Characterization. We used network metrics from graph
theory to characterize the interaction data (12, 13) (Fig. S1O). In
our graphs, vertices are the brain areas and the connecting edges
are the interareal interactions. Binary and undirected graphs, G,
were obtained from adjacency matrices AG (AG = T[IS(t,f)]),
where T denotes a threshold operator. The thresholding was
carried out by first nulling elements of IS(t,f) for which P > A,
where A is the A level. To compensate for false-positive results
arising frommultiple comparisons, we used the A level to indicate
the proportion of false rejections of the null hypothesis and then

the total number of performed tests to predict the number of false
discoveries. To obtain an FDR < 0.01, we removed 99% of the
number of elements predicted to be false discoveries from the
remaining nonzero elements of IS(t,f) in decreasing order of p.
Weused connection density,K, as the initial graph levelmeasure

of interareal connectedness (Figs. 1 and 4). K is the number of
edges present in the graph (graph’s size) divided by the number of
all possible edges. Vertex degree, d, denotes the number of edges
connected to the vertex (Fig. 1C). A k-core analysis was used to
identify densely interconnected “core” structures (Figs. S3, S5, and
S6). Vertices belonging to a k-core are identified as those that
remain after removing vertices with d < k, along with their edges
iteratively until all remaining vertices have d ≥ k. A graph’s max-
imum k-core number is the value of k, such that all vertices are
removed with k + 1. The k-coreness of an individual vertex is the
value of k, such that the vertex is removedwith k+1.We identified
network hubs by using degree and betweenness centrality. Be-
tweenness centrality, CB,i, of vertex i is the number of shortest
paths between pairs of other vertices that pass through i divided by
the total number of shortest paths between pairs of other vertices.
Betweenness centrality was computed with a Matlab algorithm
provided in the Brain Connectivity Toolbox (http://sites.google.
com/a/brain-connectivity-toolbox.net/bct/home).
To estimate the edge-wise similarity of two graphs (Fig. S2), we

define the edge-wise graph similarity index,SE, 0≤SE≤ 1, between
binary Gi and Gj, such that SE =｜AG,i ∩ AG,j)｜/｜AG,i ∪ AG,j｜.
For statistics, SE values were compared against the distribution of
SE values obtained for order- and mean degree-matched random
graphs. We corroborated the edge-wise similarity data with a
vertex-wise similarity metric, SV, that was obtained with a Spear-
man’s rank correlation coefficient and statistics of vertex degree
sequences.
Formerging a set of graphsG1. . .GN into amatching graph,GM,

we first obtained a weighted matching adjacency matrix, AG,M,
from binary adjacency matrices AG,i (i = 1. . .N), with AG,M =
N−1Σ(AG,i). Elements of AG,M are the edge-matching indicesME

(0 ≤ ME ≤ 1). To obtain comparable network characterizations
and visualizations (Figs. S3, S5, and S6), the binary GM values
were obtained from AG,M by thresholding with as large a ME

min
as possible that gave a K ≥ 0.1 but so that the minimum value of
ME

min was 0.1. The simplified graphs shown in Figs. 2–4 were
obtained from Figs. S3, S5, and S6, as indicated in figure leg-
ends, by finding an ME

min that gave a K ≥ 0.02. Note that the
ME

min of each graph (required for achieving the constant K
across graphs) is reported in the corresponding figure legend
and, in itself, indexes the degree of spectral and temporal sta-
bility of the matching graph. The progressive pruning of the
matching graphs by an increasing ME

min is illustrated in Fig. S8.
Spectral colocalization graphs (details provided in Fig. S4) were
obtained as matching graphs across the frequency bands with
the addition of thresholded band-specific edge coloring at the
matching graph threshold ME

min = 0.15, which gave K = 0.1 in
both the average and load conditions. As in Figs. 2 and 3, each of
the three frequency bands contained four time windows and
wavelet frequencies.
The graph structures reported in this study were robust against

even large changes in the A level, FDR correction, and ME
min.

The data were also robust against moderate changes in the time
window and frequency band selections.

Relation Between Amplitude Modulations and Phase Synchrony.
Theoretically, changes in oscillation amplitudes may cause
changes in phase synchrony. This is because an increase in the
signal-to-noise ratio (SNR) enables more accurate estimates of
the phase and, consequently, leads to a greater PLV with the
same underlying neuronal interaction. In our data, however,
several lines of evidence rule out the possibility that changes
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in the SNR could cause the observed changes in long-range
synchrony.
We first simulated the dependence of the PLV of coupled

signals on the SNR and on the coupling strength (Fig. S7A). The
simulations were based on two parametrically coupled noise
processes, X and Y, with a variable magnitude of uncorrelated
“measurement noise,” such that X = A + cB + sC and Y = B +
cA + sD, where A, B, C, and D are independent realizations of
white noise in the range from −1 to 1; c is the coupling constant;
and s is the noise amplitude parameter, such that s = SNR−1.
SNR is thus defined here as the amplitude of the signal divided
by the amplitude of the noise. To obtain the complex time series
of the phase, X and Y were Morlet wavelet-filtered to give XF =
X * h(t,f) and YF = Y * h(t,f) and were normalized to XF,n = XF/｜
XF｜and YF,n = YF/｜YF｜, where f = 0.1fs and fs is the sampling
rate. To evaluate the sensitivity of phase synchrony estimation to
SNR, the expected PLV was estimated across the time series,
such that plv = nr

−1｜Σ (XF,n Y*F,n)｜, where nr = 105 is the
number of noise process samples and PLV = ns

−1Σ (plv), where
ns = 105 indicates the number of realizations of the noise pro-
cesses for each value of c and s. The s parameter was varied to
produce log-linear SNR spacing where SNRi+1 = SNRi × 1.3.
Fig. S7A shows that the PLV is dependent both on the strength
of coupling and on the SNR. The constant change in SNR makes
it now easy to plot the relative change in the PLV for each step in
SNR by defining relative change as (PLVi+1 − PLVi)/PLVi (Fig.
S7B). Fig. S7B shows that at SNR > 1, the relative increase in
PLV for a constant relative improvement in SNR (here, 1.3)
decays rapidly, such that at higher SNRs, a change in SNR has
only a minor effect on the estimated PLV. Fig. S7B also shows
that at SNR < 1, the changes in PLV caused by modulations of
SNR are large and dependent on the true (and underestimated,
compare with Fig. S7A) coupling strength.
Bymappingwith simulations thePLV as a function of both c and

SNR and by estimating the PLV, SNR, and amplitude levels from
recorded data, it is possible to predict the effect that an amplitude
change would have on the PLV and then compare this prediction
with the recorded change in PLV. We estimated the average ap-
parent SNR of MEG gradiometers and magnetometers for each
subject in the frequency bands of interest (α, β, and γ) by com-
paring the recorded data with empty-room MEG recordings that
were performed before or after each recording session. The ap-
parent SNR (aSNR) was estimated from the averaged wavelet
amplitudes, such that aSNR = nc,MEG

−1Σj [(Ab,j − An,j)/An,j],
where nc,MEG is the number of MEG channels (n = 306), Ab,j in-
dicates the average amplitude of the experimental data (neuronal
activity + environmental noise), and An,j indicates the average
amplitude of empty room noise for MEG channel j. The mean
aSNR values were α-band = 3.42 ± 1.67 (mean ± SD), β-band =
1.55 ± 0.76, and γ-band = 0.75 ± 0.46. It is important to note that
because amplitude is a nonlinear metric, the relation between
aSNR and the true SNR is a nonlinear function [i.e., in the simu-
lations above, the (true) SNR ratio was defined to be the ratio of
amplitudes of signal and noise, but the (experimentally quantifi-
able) amplitude of the composite signal is less than the sum of the
amplitudes of signal and noise because it is the real values, and not
the amplitudes of the signal and noise, that are summed]. The
function linking the aSNR and SNR was estimated numerically by
creating 2·107 sample white noise signal, noise, and signal plus
noise time series as abovewith a log-linearly increasing SNR.Now,
the aSNR as a function of SNR is given by aSNR = (AS+N − AN)/
AN, where AS+N is the average amplitude of the wavelet-filtered
signal plus noise time series andAN is the average amplitude of the
wavelet-filtered noise time series (Fig. S7C).
We used grand average baseline and VWM retention period

amplitude data, the grand average aSNR estimates, and the
simulation-derived model to predict the change in PLV that
would be caused by the recorded change in amplitude. We made

the approximation that after inverse modeling, the grand average
aSNR corresponds to the grand average band amplitude, A,
across the cortical surface. The patch-wise aSNRl was then ob-
tained from the absolute patch amplitude Al by scaling: aSNRl =
aSNR × Al/A. Thus, grand average amplitudes of average con-
dition baseline and the one-object condition retention period
were used to estimate the initial patchwise aSNR, and the grand
average amplitudes of the average and six-object condition re-
tention periods gave the amplitude change-modulated patch-
wise aSNR. The observed and SNR change-predicted PLV val-
ues corresponding to these “initial” and “modulated” conditions
were obtained for those pairs of cortical patches in which the
recorded PLVs were statistically significant (P < 0.01, un-
corrected). The choice of the A level, however, did not have a
noticeable influence on the conclusions drawn hereafter. The
SNR change-related change in each interareal PLV was pre-
dicted by first obtaining the initial condition PLV and evaluating
the average initial and modulated aSNRs of the corresponding
pair of cortical patches. The true initial and modulated SNRs
were obtained from the aSNRs by interpolating the data in Fig.
S7C. The modulated condition PLV was then given by first in-
terpolating the data in Fig. S7A at the initial PLV and SNR to
find the c corresponding to the initial PLV and then using this c
and the modulated SNR to predict the modulated PLV.
In the average condition, the modulations of amplitude, PLV,

and SNR were compared between the averaged baseline values
and the four retention period time windows for each of the four
wavelets in each frequency band. The load condition was ap-
proximated by a direct time frequency window-by-time frequency
window comparison of the retention periods of the six-object and
one-object memory load conditions to allow a quantitative
evaluation of the PLV amplitude relation therein. Hence, in both
the average and six-object vs. one-object conditions, we obtained
data from 16 graphs per frequency band.
In the average condition (Fig. S7D), the PLV changes pre-

dicted by the change in amplitude from baseline to the retention
period (Fig. S7D, red dots) clearly did not explain the ex-
perimentally observed PLV changes (Fig. S7D, black dots) in the
α-, β-, or γ-band. This was not brought about by the aSNR
scaling, because a nonscaled aSNR did not predict larger PLV
changes (Fig. S7D, blue dots). Overall, the predicted PLV
changes were much smaller in magnitude than the observed PLV
changes. Moreover, because the retention period amplitudes
were largely suppressed below the baseline level, the predicted
PLV values were opposite to the recorded PLV changes in most
cases. It is thus important to note that a widespread cortical
amplitude suppression is associated with an increase in interareal
phase synchrony (numerical details provided in Fig. S7F) in this
study. Hence, the common interpretation of an amplitude sup-
pression to imply “desynchronization” might not be accurate for
spatial scales larger than those that can be separated with source
modeling.
With the six-object vs. one-object condition, we addressed

whether there was a load-dependent increase in the retention
period amplitude that could predict the load-dependent increase
in phase synchrony. Indeed, the data revealed both an amplitude
and a PLV increase from the one- to the six-object memory load
and that the PLV was weakly correlated with amplitude (Fig.
S7E, numerical details provided in Fig. S7F). The enhanced
PLV, however, did not arise from the amplitude increase-caused
enhancement in the SNR, because the predicted PLV values
were saliently smaller than the observed values. It is also clear
that a considerable proportion of the strengthened PLV values
are associated with negative or close-to-zero amplitude modu-
lations (Fig. S7E). In the α-band, where the load-condition ef-
fects were the strongest, the mean relative change in PLV [11.3 ±
4.6% (mean ± SD)] was more than 18 times greater than the
predicted SNR-caused change in PLV (0.6 ± 0.5%). We also
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estimated the fraction of PLV values that was predicted at an
accuracy of 30% by the SNR change. The percentages of ac-
cepted predictions were very small, ranging from 0 to 1.82%
(Fig. S7F). Furthermore, we evaluated the effects that a gross
misestimation of the aSNR could have. Even an aSNR as low as
0.5 did not dramatically increase the percentage of accepted
predictions (range: 1.35–5.39%). Hence, we conclude that the
both the average and six-object vs. one-object condition data in
Fig. S7 strongly suggest that the observed changes in phase
synchrony were not caused by SNR-related effects resulting from
amplitude modulations.

The MEEG signal amplitude is strongly dependent on local
neuronal synchronization. The six-object vs. one-object condition
data thus lead to a hypothesis that the load-dependent amplitude
increase, in fact, could be caused by the underlying strengthening
of phase synchrony. This is plausible in light of the highly clus-
tered structure of the frontoparietal α-band network, which has a
large amount of short/medium-range connections. The relative
mean strengthening of phase synchrony was also roughly two
times greater in magnitude than the relative amplitude effect.
Future studies could exploit forward modeling to disentangle the
interactions and separability of phase synchrony and amplitude
metrics, which are widely used in human MEG and EEG studies.
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Fig. S1. Workflow and variables for cerebral interaction mapping. Details are provided in SI Text.
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Fig. S2. Edge- and vertex-wise graph similarity estimates indicate that network structures in α-, β-, and γ-frequency bands are sustained throughout the VWM
retention period. (A) Average condition edge similarity index (SI) statistics in all time windows (x and y axes) for α-, β-, and γ-frequency bands. The colors
indicate the number of graphs in the specific frequency band that were significantly similar for each time window-time window pair (P < 0.01, Bonferroni-
corrected with the number of graphs in the frequency bands; colors: yellow, 4; orange, 3; red, 2; purple, 1) (4). To qualify as “significantly similar,” we required
that a minimum of two of four graphs (corresponding to four wavelet center frequencies in each frequency band) were significantly similar (P < 0.01, cor-

Legend continued on following page
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rected) throughout the retention period (four time windows). The gray rectangle indicates the four time windows denoted as the retention period in this
study. (B) Average condition vertex similarity statistics among time windows. Frequency bands and colors are as in A. Load condition edge (C) and vertex
similarity (D) statistics. Frequency bands and colors are as in A. Taken together, the data in A–D indicate that α-, β-, and γ-frequency band networks are
significantly similar throughout the VWM retention period, which we define to be the last four time windows with centers from 480 to 945 ms. (E) Average
condition edge similarity statistics among all wavelet frequencies (x and y axes) across the retention period. The colors indicate the number of graphs that were
significantly similar for each frequency-frequency pair (P < 0.01, Bonferroni-corrected with the number of graphs in the retention period; colors: yellow, 4;
orange, 3; red, 2; purple, 1) (4). Gray squares indicate the α-, β-, and γ-frequency bands. (F) Average condition vertex similarity statistics among wavelet
frequencies. Colors are as in E. Load condition edge (G) and vertex similarity (H) statistics are as in E. The data in E and F show that in the average condition,
graphs within α-, β-, and γ-bands were strongly self-similar, but there was less overlap across frequency bands. In the load condition (G and H), on the other
hand, graphs were significantly similar almost throughout the α-, β-, and γ- (10–40 Hz) ranges.
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Fig. S3. Complete average condition matching graphs and hub classification for Fig. 2. Each matching graph was obtained from four wavelet frequencies and
four retention period time windows, giving a total of 16 graphs per matching graph. (A) Average condition α-frequency band (10–13 Hz) matching graph. Lines
indicate interareal interactions. Line color (minimum, black; maximum, white) and widths are proportional to the edge-matching index, ME (ME

min = 0.13,
ME

max = 1). For example, ME = 0.5 indicates that the given edge is significant in half of the graphs merged into the matching graph. The graph’s ME
min value

thus indexes the overall stability and robustness. Spheres indicate brain regions. The sphere radius is proportional to the region’s degree, d (dmax = 56). Sphere
color denotes vertex k-coreness, with the white color indicating regions belonging to the graph’s maximum k-core (kmax = 13). Green borders encircle regions
with vertex betweenness centrality values in the greatest 10th percentile. The border width is proportional to the betweenness centrality value. (B) Hub
classification of the individual α-band average condition graphs that were used in the matching graph in A. The bars indicate the fraction of the graphs (x axis)
in which a brain area (y axis) was classified as a hub on the basis of belonging to the top 10th percentile of degree (pdegree) or betweenness centrality
(pbetweenness) values. The bar colors indicate whether the brain area belonged to the parietal (blue) or frontal (red) region, to the visual regions in the OC or
OTC (green) region, or to other brain regions (gray). (C) Average condition matching graph for the β-band (18–24 Hz,ME

min = 0.12,ME
max = 0.81, dmax = 35, kmax

= 8). (D) Individual graph-based hub classification in the β-band. (E) Average condition matching graph for the γ-band (30–40 Hz, ME
min = 0.31, ME

max = 0.94,
Legend continued on following page

Palva et al. www.pnas.org/cgi/content/short/0913113107 8 of 14

www.pnas.org/cgi/content/short/0913113107


dmax = 42, kmax = 8). (F) Individual graph-based hub classification in the γ-band. C, central; CA, calcarine; CI, cingulate; CN, cuneus; F, frontal; G, gyrus; IN, insula;
P, parietal; S, sulcus; T, temporal; O, occipital; a, anterior; ang, angular; cal, callosal; col, collateral; i, inferior; int, intra; ist, isthmus; fus, fusiform; la, lateral; m,
middle; orb, orbital; p, posterior; pa, para; pah, parahippocampal; pla, planum temporale and polare; pe, peri; pr, pre; po, post; s, superior; tr, transverse.
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Fig. S4. Colocalization analysis of α-, β-, and γ-band networks in the average and load conditions. (A) Colocalization graph of α-, β-, and γ-band synchrony in
the average condition. The edges of each band were allocated one of the red, green, or blue (RGB) colors (α = red, β = green, γ = blue) when they exceeded the
edge-matching index (ME

thres = 0.15) in the given band. Otherwise, the edges were black. The final edge colors were obtained by a direct edge-wise RGB
superposition. The graph’s total ME

min = 0.15 corresponds to K = 0.084. The edge widths are proportional to the edge-matching index. (B) (Upper) Histogram of
the edge colors in A. (Lower) Histogram of edge colors in the average condition colocalization graph at ME

min = 0.1 (K = 0.173) reveals a qualitatively similar
edge color distribution as ME

min = 0.15 and shows that the color distribution is not strongly influenced by the threshold level. The centers of the error bars
indicate the expected values of edge counts per color, which were obtained with 105 shufflings and resuperpositionings of the edge composite (RGB) colors.
The error bars indicate the mean ± 3 SD, which corresponds to P < 0.01 with a Bonferroni correction by the number of possible color combinations (7). The
histograms show that there are more solitary α- and γ-edges and less α-γ- and α-β-γ-edges than expected by chance, suggesting that the α- and γ-networks are
partially spatially segregated. (C) Colocalization graph of α-, β-, and γ-band networks in the load condition. The graph was constructed as in A. The graph’s total
ME

min = 0.15 corresponds to K = 0.096. (D) (Upper) Histogram of edge colors in C. (Lower) Histogram of edge colors in the load condition colocalization graph at
ME

min = 0.1 (K = 0.183) reveals a qualitatively similar edge color distribution as ME
min = 0.15. The histograms and surrogate data were computed as in B. As in

the average condition, there were more solitary α-edges and less α-γ-edges than expected in the load condition. However, the count of colocalized α-β-γ-edges
was higher than predicted by the surrogate. These multiband interactions were robust among the left hemispheric frontoparietal regions, notably between
the intPS, sprCS (i.e., putative frontal eye fields), and pmFG and sFS (i.e., putative premotor/dorsolateral prefrontal cortex). C, central; CA, calcarine; CI, cin-
gulate; CN, cuneus; F, frontal; G, gyrus; IN, insula; P, parietal; S, sulcus; T, temporal; O, occipital; a, anterior; ang, angular; cal, callosal; col, collateral; i, inferior;
int, intra; ist, isthmus; fus, fusiform; la, lateral; m, middle; orb, orbital; p, posterior; pa, para; pah, parahippocampal; pla, planum temporale and polare; pe, peri;
pr, pre; po, post; s, superior; tr, transverse.
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Fig. S5. Complete load condition matching graphs and hub classification for Fig. 3. (A) Load condition: α-band (ME
min = 0.43, ME

max = 1, dmax = 36, kmax = 14).
(B) Hub classification of the individual α-band load condition graphs that were used in the matching graph in A. The bars and colors are as in Fig. S3. (C) Load
condition matching graph for the β-band (ME

min = 0.18, ME
max = 1, dmax = 35, kmax = 11). (D) Individual graph-based hub classification in the β-band. (E) Load

condition matching graph for the γ-band (ME
min = 0.1, ME

max = 0.69, dmax = 22, kmax = 7). (F) Individual graph-based hub classification in the γ-band. C, central;
CA, calcarine; CI, cingulate; CN, cuneus; F, frontal; G, gyrus; IN, insula; P, parietal; S, sulcus; T, temporal; O, occipital; a, anterior; ang, angular; cal, callosal; col,
collateral; i, inferior; int, intra; ist, isthmus; fus, fusiform; la, lateral; m, middle; orb, orbital; p, posterior; pa, para; pah, parahippocampal; pla, planum tem-
porale and polare; pe, peri; pr, pre; po, post; s, superior; tr, transverse.

Palva et al. www.pnas.org/cgi/content/short/0913113107 11 of 14

http://www.pnas.org/cgi/data/0913113107/DCSupplemental/Supplemental_PDF#nameddest=sfig03
www.pnas.org/cgi/content/short/0913113107


Fig. S6. Complete capacity condition matching graphs and hub classification for Fig. 4. Each matching graph was obtained from four wavelet frequencies and
four retention period time windows, giving a total of 16 graphs per matching graph. (A) α-Frequency band (here, 9–12 Hz) matching graph (ME

min = 0.24,
ME

max = 0.6, dmax = 58, kmax = 7). (B) Hub classification of the individual α-band capacity condition graphs that were used in the matching graph in A. The bars
and colors are as in Fig. S3. (C) β-Frequency band (18–24 Hz) matching graph (ME

min = 0.18, ME
max = 0.63, dmax = 36, kmax = 5). (D) Individual graph-based hub

classification in the β-band. C, central; CA, calcarine; CI, cingulate; CN, cuneus; F, frontal; G, gyrus; IN, insula; P, parietal; S, sulcus; T, temporal; O, occipital; a,
anterior; ang, angular; cal, callosal; col, collateral; i, inferior; int, intra; ist, isthmus; fus, fusiform; la, lateral; m, middle; orb, orbital; p, posterior; pa, para; pah,
parahippocampal; pla, planum temporale and polare; pe, peri; pr, pre; po, post; s, superior; tr, transverse.
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Fig. S7. Evaluation of the relation between the VWM-related amplitude and phase synchrony modulations. (A) PLV of two simulated signals as a function of
their SNR. Coupling strengths of 1, 0.5, 0.25, 0.125, and 0.0675 are indicated by black, red, green, blue, and purple lines, respectively. (B) Relative change in PLV
for a constant relative increase in SNR as a function of the SNR. The relative change was obtained as (PLVi+1 − PLVi)/PLVi, with SNRi+1 = SNRi × 1.3. (C) aSNR as a
function of the (true) SNR. (D) Relative change in PLV as a function of the relative change in amplitude in the average condition. Black dots, observed PLV
changes; red and blue dots, PLV changes predicted by the amplitude modulation-caused SNR changes (red, aSNR scaled according to local amplitude; blue,

Legend continued on following page
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aSNR constant across the cortical surface; details provided in SI Text). The PLV and amplitude modulations were obtained by comparing the baseline and
retention periods, such that the relative change in PLV = (PLVR − PLVBL)/PLVBL and the relative change in amplitude = (AR − ABL)/ABL, where the subscripted R
denotes the retention period and the subscripted BL denotes the baseline. (E) Relative change in PLV as a function of the relative change in amplitude in the
six-object vs. one-object condition that was used to investigate the memory load effects on phase synchrony and amplitude modulation. Colors are as in D. The
relative change in PLV = (PLV6O − PLV1O)/PLV1O and the relative change in amplitude = (A6O − A1O)/A1O, where subscripted 1O and 6O denote the retention
periods of one-object and six-object memory load conditions, respectively. (F) Summary of the numerical details. Pred., predicted; Rel., relative.

Fig. S8. Illustration of graph pruning by increasing the minimum edge-matching index (ME
min). (Left) Column shows the average condition graph in the

α-band at five ME
min levels (0, 0.13, 0.4, 0.55, and 0.7), which indicates the minimum proportion of graphs from all graphs in the matching graph in which a

given edge must be present (significant) to be visualized. The edge and vertex coloring, the vertex sizes and edge thicknesses, and the identification of hubs
correspond to the scheme used in Figs. 2–4. AtME

min = 0, all significant edges in any of the 16 α-band retention period graphs are visualized. AtME
min = 0.55, all

visualized edges are present in at least 55% of the graphs (i.e., in 9 of 16 graphs). The connection density, K, decreases with increasing ME
min. The values of K

corresponding to the visualized values of ME
min are shown in the figure. (Right) For a pair-by-pair comparison, the load condition graphs at the same K levels

are shown.
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