
Supplementary materials and methods. 
Cholesterol (Chol), 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC), 1,2-Dioleoyl-sn-
Glycero-3-Phosphocholine (DOPC), Ganglioside GM1, and 1,2-Distearoyl-sn-Glycero-3-
Phosphoethanolamine-N-[Biotinyl(Polyethylene Glycol)2000] (DSPE-Bio-PEG2000) were 
purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). Casein, tris, and 
ethylenediaminetetraacetic acid (EDTA) were obtained from Fisher Scientific (Fairlawn, NJ). 
Fatty-acid free bovine serum albumin (BSA) was purchased from Sigma Chemical Co. (St. 
Louis, MO). Texas Red-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine 
triethylammonium salt (Texas-Red-DHPE) and Cholera toxin subunit B (CTB)-Alexa Fluor 488 
(A488) were from Invitrogen (Carlsbad, CA). Streptavidin conjugated microspheres with mean 
diameter of ~6 μm were from Polysciences, Inc. (Warrington, PA). 
Preparation of Giant Unilamellar Vesicles 

Lipid solutions were prepared to contain 37 mol% DPPC, 33 mol% Chol, and 30 mol% 
DOPC dissolved in chloroform for a total lipid concentration of 1 mM, and additionally 
contained 0.3 mol% Texas-Red-DHPE, and 0.5 mol% DSPE-Bio-PEG2000. For experiments 
where CTB-binding was desired, 1 mol% of GM1 was added. GUVs were prepared by 
electroformation as described(1). Briefly, 70 μL of lipid solution was spread onto the electrically 
conductive sides of two ITO-coated glass slides (Delta Technologies Ltd, Stillwater, MN) at 60 
°C. The slides were placed under vacuum for at least 2 h, then combined with a silicone spacer 
and filled with 100 mM sucrose solution. The slides were connected to an AC field (2 V/mm, 5 
Hz) and maintained at 60 °C for 2 h. 
Preparation of micropipettes 

Micropipettes were fashioned from glass capillaries (World Precision Instruments Inc., 
Sarasota, FL) that were stretched using a pipette puller. Pipette tips were cut using a microforge 
at desired inner diameters of ~3 μm. Irreversible adhesion of membrane to the pipette was 
prevented by incubation of pipette tips in 0.5 mg/mL BSA dissolved in 1X PBS. Pipettes were 
filled with 120 mM sucrose solution using a MicroFil needle (WPI, Sarasota, FL). 
Tube domain growth 

Tube domain growth experiments were performed using two different microscopes: a 
combined double micropipette / fluorescence confocal microscopy setup (Fig. 1A) which has 
been described before (see Ref. (2)) and a combined optical trapping / fluorescence microscopy 
system (Fig. 1B), which we detail below.  

A sample chamber was formed from two coverslips overhanging both sides of a glass 
microscope slide, creating a 1 mm thick cell that was open on three sides to allow the insertion of 
a micropipette. The coverslips were pretreated by immersion in a solution of 2.5 mg/mL casein, 
20 mM tris, and 2 mM EDTA and subsequent rinsing with deionized water. The chamber was 
filled with 100 μL of 125 mM sucrose, 1.5 μL of 10X PBS, 0.2 μL of microsphere dispersion, 
and 0.3 μL of vesicle dispersion. The chamber was mounted on an inverted microscope (IX81; 
Olympus, Center Valley, PA) equipped with a 60X 1.2NA water immersion objective with 
coverslip correction (Olympus), a Texas Red filter cube (Chroma, Rockingham, VT), and a 
back-illuminated electron-multiplying charge-coupled-device (EM-CCD) camera (ImagEM; 
Hamamatsu, Bridgewater, NJ). The microscope is further equipped with a home-built optical 
trapping (laser tweezer) system which uses a second, independently positioned objective (60X, 
1.1NA, water immersion, long working distance; Olympus) oriented opposite the imaging 
objective to introduce a 1064 nm fiber optic laser into the chamber (Fig. 1B). A single 
micropipette was inserted into the chamber with the use of a three-dimensional motorized 
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micromanipulator system (Luigs & Neumann, Ratingen, Germany). Following insertion, zero 
pressure across the pipette tip was attained and calibrated by watching the flow of small 
fluorescent particles within the tip. Aspiration pressure was controlled through adjustments in the 
height of an attached water reservoir, and it was measured with a pressure transducer (Validyne 
Engineering, Los Angeles, CA). The chamber was allowed to sit for ~15 minutes such that a 
majority of the beads and vesicles settled to the chamber floor. Vesicles were then selected 
which primarily consisted of two large domains (with Lo phase fraction > 0.5); which had 
sufficient excess area such that aspiration at low pressure led to a projection with length greater 
than the pipette radius; and, which were roughly 10 to 30 μm in diameter. The aspiration 
pressure was increased to a low value (~10 Pa), and the Ld portion of the vesicle pulled into the 
pipette. The aspirated vesicle was repositioned somewhat higher in the chamber (~80 μm) to 
minimize interference from other vesicles and beads. The trapping objective was brought to 
focus on a membrane-free bead, after which the trapped bead was then positioned adjacent and 
coplanar to the aspirated vesicle. The Lo portion of the vesicle was moved into contact with the 
bead and then retracted slowly to a distance of ~10 μm, forming a tube between the bead and 
vesicle. This tube was initially completely within the Lo phase. The aspiration pressure was 
increased sharply, after which an Ld domain was observed to nucleate at the tube neck region of 
the vesicle. This domain grew in the direction of the bead. After domain growth over a few 
minutes, the pressure was further increased and a “fresh” tube region was generated by retracting 
the bead by 40 μm. Immediately thereafter, both the tube neck and adjacent length of tube were 
once again completely in the Lo phase; the previously generated Ld domain had been pulled 
further along the tube and was completely removed from the vesicle. A new domain nucleated at 
the tube neck and again grew in length, and this process could be repeated several times. 
Optical trap design and calibration 

A 1064 nm continuous wave fiber optic laser (IPG Photonics, Oxford, MA) with an output 
power of 2 W was passed through a half-wave plate (Thorlabs, Newton, NJ) and a polarizing 
beam splitter cube (Newport, Irvine, CA) to split the laser into a trapping component, and a 
second component which was redirected into a beam dump. In this manner, the relative power 
levels of each portion could be controlled through rotation of the half-wave plate without 
resorting to changing the diode laser current(3). The trapping laser was then passed through a 
3.33X beam expander (Thorlabs) to overfill the back aperture of the trapping objective.  In order 
to allow movement of a trapped bead over distances of several millimeters at constant trap 
stiffness, the laser was reoriented to travel parallel to the x-axis of a motorized stage (MS-2000; 
Applied Scientific Instrumentation, Eugene, OR). The x-axis of the motorized stage was parallel 
to the tube pulling direction. An IR beamsplitter was mounted on the stage to redirect the laser 
perpendicular to the x-axis and parallel to the optical axis of the microscope – and a long 
working distance, 60X, 1.1 NA water immersion microscope objective (Olympus) to focus the 
laser. In this fashion, the stage, beamsplitter, and trapping objective could be moved 
simultaneously along the axis used to pull tubules from GUVs while maintaining a constant 
beam power, orientation, and profile through the trapping objective, thus stabilizing the trap 
stiffness at all positions. Also attached to the trapping objective assembly were optics to pass 
optically filtered blue light from the transmitted light lamp head of the microscope onto a trapped 
bead, and to collect the resultant backscattered light onto a CCD camera (XC-ST30; Sony, Park 
Ridge, NJ). The backscatter image was thereby fixed relative to the focal point of the trapping 
objective. The trap was calibrated using the drag-force method, in which the motorized stage was 
used to drag a trapped bead through the chamber at several fixed velocities(4). During the stage 
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movement, hydrodynamic forces acted on the bead as rvf drag πη6= , where η is the viscosity of 
the solution, r is the bead radius, and v is the velocity at which it is moved. The bead was imaged 
via the backscatter light-collecting CCD mounted on the motorized stage, and its center was 
determined with custom image-fitting algorithms written in Matlab (The Mathworks, Natick, 
MA). Since the camera was fixed relative to the trapping objective, the image of the bead was 
displaced from its stationary position only while the stage was moving. The displacement is 
related to the hydrodynamic force exerted at the specified velocity by the trap stiffness as for a 
Hookean spring: , where k is the trap stiffness and Δx is the displacement of the bead. 
The trap stiffness was typically 0.05 pN/nm, and was calibrated for every individual bead used. 
Once the stiffness was known, subsequent imaging and determination of the bead displacement 
allowed us to measure the net force acting on the trapped bead in real-time (~20 Hz). Force 
measurements occurred simultaneously with measurements of aspiration pressure and 
fluorescence imaging by the microscope-mounted EM-CCD. 

xkfdrag Δ=

Image analysis 
Quantitative image analysis was achieved using HCIMAGE (Hamamatsu), IMAGEJ 

(National Institutes of Health, Bethesda, MD), and FLUOVIEW (Olympus). 
Line tension measurements 

Domain line tension for composition DOPC:Chol:DPPC; 30:33:37 was measured by means 
of domain boundary flicker spectroscopy, as previously described(5). Briefly, fluctuating 
domains of freshly prepared vesicles were imaged with an EM-CCD camera (ImagEM, 
Hamamatsu, Bridgewater, NJ) mounted on an inverted microscope (1X71; Olympus, Center 
Valley, PA) with a 60X 0.90 numerical aperture air objective (UPlanFL N, Olympus) and a 
Texas Red filter cube (Chroma, Rockingham, VT). Domains with centers-of-mass positions 
significantly deviating from the vesicle pole during the image acquisition or with radius larger 
than 30 % of the vesicle radius were discarded. To reduce the effect of photo-oxidation, neutral 
density filters and low light intensity were used. All measurements were taken at room 
temperature with a frame acquisition time of 15 ms and an averaged frame rate of 65 frames per 
second. Normal mode analysis of domain shape tracing data were processed with MATLAB 
algorithms to calculate averages of line tensions using first and second set of 200 frames of a 
fluctuating domain movie, for five different vesicles. We obtained a value of 0.16 ± 0.062 pN.  
Numerical solution of shape equations 

The formalism described below is adapted from a theoretical scheme developed by Juelicher 
and Lipowsky(6, 7). The catenoid shape was parameterized by means of a non-dimensionalized 
radius r and tangent to the shape ψ, as a function of arclength of the shape s, see inset of Fig. 4A 
(8). The arclength s was measured from the catenoid edge, and the angle ψ was measured 
relative to the radial coordinate axis. We solved the resulting system of first order differential 
equations with the boundary value problem (bvp) solver bvp4c of Matlab (The Mathworks, Inc., 
Natick, MA). The bvp solver requires fixed integration intervals. In order to vary the total 
arclength of the shape, the equations were therefore re-parameterized using the integration 
variable [ ]π0∈S  such that s (S=0) = s0 = 0 at one end of the shape, and s(S=π) = send at the other 
end(7, 9). For the phase-separated tube the two phase boundaries are localized at ( )*

11 Sss =  and 
( )*

22 Sss = . In the following, derivatives with respect to s are indicated by a dash, and derivatives 
with respect to S are indicated by a dot. The choice of rSs /)(sin=&  fixes the total area of the 
shape to a value corresponding to the area of a sphere with unit radius(9), since 
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Similarly, fixing values  and  while varying the shape ensured constant area fractions of 
coexisting phases. The free energy of the membrane is given, using indices i for coexisting 
phases(7, 10): 
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Here, κ is the bending stiffness, C1 and C2 are meridianal and parallel curvatures of the axially 
symmetric shape, and V and L are volume and length of the shape, respectively. Furthermore, σ, 
p, and f are Lagrange multipliers fixing area, volume, and length of the shape, respectively. T is 
an additional Lagrange multipler corresponding to the line tension at a phase boundary at 
position si. The quantity γ is also a Lagrange multiplier. Its mechanical meaning is the projection 
of the transverse shear along a direction orthogonal to the symmetry axis(11). Geometrically it 
ensures the constraint ψcos=′r (8). For axially symmetric shapes, we have ψ ′=1C  and 

rC /)(sin2 ψ= . We furthermore have  
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The variation of the shape free energy in terms of the variables ψ , ψ ′ , r , r ′ , and γ  can be 
expressed in terms of a Lagrangian defined as (mechanical variables are here divided by the 
bending stiffness)(10) 
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Integrating the bracketed terms in Eq. S5 by parts yields two Euler-Lagrange equations for each 
domain i plus two boundary conditions at each phase boundary. From the Euler-Lagrange 
equations one obtains three first order ordinary differential equations (DEQs) for the first domain 
(which is an Lo phase domain), after dividing by the bending stiffness of the Lo phase:  
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For the second domain, i.e. the Ld domain, which has a different bending stiffness, the 
equivalents to Eqs. S7 and S8 are 
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where LdLo κκε =  is the ratio of bending stiffness values in Lo and Ld phase, respectively. For 
the third domain, the shape equations are essentially those of Eqs. S6 to S8. For each domain, we 
use the following three additional DEQs: 
 

ψcos=′r  (S11) 
 

ψsin−=′z  (S12) 
 

0=′iσ . (S13) 
 
Eq. S12 is an auxiliary DEQ that is used to find the z coordinate of a point on the shape, and Eq. 
S13 ensures that the lateral tension in each domain is spatially constant. The system of 18 
differential equations (six for each domain) is integrated using the fixed integration variable 

[ ]π0∈S , instead of using the arclength of the deformed shape, s. This requires that the 
integration intervals be expressed for each domain as function of [ ]π0∈S . For the first domain, 
we have , for the second domain , and for the third domain 
we use . It follows that , 

, and , for first through third 
domain, respectively.  
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The system of 18 DEQs requires 18 boundary conditions. Six of these are defined at the two 
ends of the shape. At the catenoid edge, where we have s = s0 = 0, we require 
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Eq. S14 sets the mean curvature at the catenoid edge to zero (free hinge boundary condition)(12) 
and Eq. S15 fixes the lateral tension to a value of choice. At the tip of the tube, where endss =  we 
enforce (neglecting normal pressure difference, appropriate for a thin tube(13)) 
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Eqs. S17-S19 are a consequence of assuming perfect cylinder geometry at the tube tip. Eq. S17 is 
the mechanical force balance (mechanical quantities are divided by the bending stiffness), Eq. 
S18 orients the tangent angle appropriately for an axially symmetric cylinder, and Eq. S19 
follows from the fact that the transverse shear projected into a direction orthogonal to the 
symmetry axis must be zero.  

The Hamiltonian of the shape, r/r/ψH iiii ′∂∂′+′∂∂′+−= LLL ψ , reads: 
 

π
ψψγσψψ

2
sincossin

2
sin

2

2

2

2
2 frpr

r
UrH ii ++−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  (S20) 

 
Accounting for cylinder geometry at the membrane edge, neglecting the pressure term 
(appropriate for a thin cylinder), and inserting Eqs. S17 and S18 shows that H = 0 at the tube tip. 
The Hamiltonian is furthermore conserved, and therefore H = 0 all along the shape. 

Additional boundary conditions connect the shape at the two phase boundaries, and we 
require six boundary conditions at each phase boundary. Three of these ensure the continuity of 
the shape, i.e. angle, radius, and the coordinate z have to have the same values immediately 
before and after each phase boundary. The remaining three phase boundary conditions are 
mechanical jump conditions. They are obtained from the two boundary terms of the Euler-
Lagrange equations and they read (indices indicate value immediately before and after the 
respective phase boundary): 

 
021 =+− Tγγ ,        032 =+− Tγγ  (S21) 

 
as well as  
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at the first phase boundary, whereas 
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at the second phase boundary. Here ( ) LoLo

G
Ld
G κκκζ /−=  is the Gaussian bending stiffness 

difference between Lo and Ld phase, made non-dimensional by dividing with the Lo phase mean 
curvature stiffness(7, 14). Eq. S21 means that the jump across the phase boundary of transverse 
shear projected along the parallels is equal to line tension. Eqs. S22 and S23 express the fact that 
the bending moments have to be continuous in passing the phase boundaries. The remaining set 
of boundary conditions is obtained from the requirement that the Hamiltonian, H, is continuous 
across the phase boundaries. This leads to  
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for the first and second phase boundary, respectively. Eqs. S24 and S25 relate the jumps in 
lateral tension across the phase boundary to the jumps in curvature.  

Since pressure p and Gaussian bending stiffness difference ζ had minute effects on our shape 
series these parameters were set to zero for the shapes shown in Fig. 4 and Fig. S7. 

In variations of the code, the total length of the tube is specified via an additional boundary 
condition. This allows determining the pulling force, f, as an eigenvalue.  
 
Derivation of analytical transport model. 

The diffusion equation for mass transport in the Ld phase tube is tD dL ∂∂=∇ μμαβ
2 , where 

 is a binary inter-diffusion coefficient in the Ld phase. At steady state this relation simplifies 

to a Laplace equation: 

dLDαβ

02 =∇ μ (15). This steady state relation is integrated along a local spatial 
coordinate Z of the Ld domain (see Fig. 3), using two chemical equilibrium boundary conditions 
(at each end of the Ld phase tube). At the tube neck, Lo

eqZ

Ld μμ =
=0

, where eqμ  is the value of μ  

in the flat reservoir (i.e. within the vesicle where ( )0,0 == vesCφμμ  where Ci is the curvature in 
membrane region i and φ0 indicates the composition (mole fraction) of the vesicle reservoir; see 
Fig. 3C). It is thus assumed that the value of μ  at the tube neck with curvature Cn is equal to the 
value in the flat reservoir(2). The second boundary condition is ( t

Lo

ZZ

Ld C,0
0

φμμ =
=

), where Ct 

is the curvature at the inner tube phase boundary (Fig. 3A). Here, composition is fixed at φ0, 
because we assume that the phase transition occurs at the composition defined by the binodal 
line of the phase diagram, see Fig. 3. This simplifying assumption implies that the Ld / Lo phase 
diagram is not modified by membrane curvature (see the main text for further discussion of that 
aspect). After integration, eqZ

ZZZ μμδμ +⋅= 0
0

)(  (0 < Z < Z0), where 
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( ) eqtZZ
C μφμμδ −=

=
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0
, and Z0 is the position of the phase boundary. The domain boundary 

velocity υ = dZ0/dt is related to mass transport via the continuity relation μφυρ ε ∇=Δ LdM  (15), 
where ρ is an area density (which for simplicity we assume to be equal in all phases), M is a 
mobility (an Onsager transport coefficient) in the Ld phase, and we use LdLdLoLo RR φφφε −=Δ / ; 

LdLo φφ −  is the width of the miscibility gap (Fig. 3), and Ri is the tube radius of phase i. Note that 
the ratio of tube radii is related to bending stiffnesses through εκκ ≡= LdLoLdLo RR ; the 
bending stiffness ratio ε is a material property of a phase-separated tube and does not depend on 
curvature. We evaluate the quantity μδ  from a Taylor expansion(2), considering absence of an 
intrinsic membrane curvature preference (i.e. spontaneous curvature, causing the first order term 
in an expansion in curvature to disappear(2)): 
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where the index “0” of the partial differentials indicates evaluation of the partial derivatives for 
the flat state of the membrane(2). The domain growth in our problem therefore is assumed to be 
caused by a thermodynamic driving force to lipid sorting due to the composition dependence of 
the bending stiffness in Eq. S26 (2). Assuming the composition variation along the Ld phase tube 
to be small, and accordingly the curvature change along the Ld phase tube to be small, we have 
an approximately constant lateral (mean-) tension σLd in the Ld phase domain of the tube: 

. Integration of the continuity equation mentioned above (assuming a time-
independent curvature C

2/2
0 CLd

Ld κσ =

t at the inner tube phase boundary to approximately be equivalent to the 
inverse Ld tube radius C) leads to Eq. 1 of the main text. 

We note that the simplifying binary description used here to reduce analytical complexity 
eliminates a variety of phenomena such as reverse osmosis, inverse osmosis, and blocked 
osmosis, which are common in ternary mixtures(16). Because the Onsager reciprocity relations 
become relevant only for mixtures with three or more components(16), any of the above 
mentioned phenomena are absent in binary mixtures.  
 
Supplementary figure captions. 
Figure S1. Domain growth dynamics are independent of total tube length and domain number 
order. A) Domain length over time for five domains grown consecutively on the same vesicle, 
similar to method used to obtain data in Fig. 2B but without changing aspiration pressure 
(membrane tension) between domains: pressure was held constant at 35 Pa (membrane tension of 
0.04 mN/m). All five domains are observed to grow at the same rate regardless of nucleation 
order and total tube length. Solid line is a linear fit to the aggregate of all five domains. The 
initial length of Lo phase available for each new Ld domain to invade was kept constant at 30 
µm (as depicted in S1 A ii). B) Force decays observed for three sequential domains generated at 
the same aspiration pressure of 22 Pa (σres = 0.06 mN/m). Decays are nearly identical in shape. 
C) Change in (secondary) domain lengths of the first four domains shown in panel A) 
immediately after being pulled entirely into the tube and far from the vesicle neck. The domain 
lengths increase sharply as a result of a decrease in domain radius immediately after tube 
elongation; they slowly decrease over time with increases in domain radius as the tube 
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membrane tension drops due to the nucleation and growth of a new primary domain. Times t = 0 
for each consecutive secondary domain are defined as the times of nucleation of each following 
primary domain. 
 
Figure S2. Homogeneous vesicles show rapid mechanical equilibration after tube length and 
aspiration pressure changes. A) Force response (filled circles) of a homogeneous single-phase 
aspirated vesicle with a tube that was quickly elongated by 30 µm at velocity of 31.5 µm/sec. 
The time-dependent velocity of the trap center is shown as a gray line. Tube force relaxes near to 
the initial value within two seconds after lateral displacement of the pulling bead was stopped. 
The vesicle was held at an aspiration pressure of 91 Pa (membrane tension of 0.11 mN/m). 
Vesicle had a nominal composition of Lo3 as listed in Table S1 and Fig. S4. Equivalent time 
dependence was observed for Ld phase membranes (compositions listed in Table S1), as well as 
pure POPC vesicles. B) Force response (black line) of the same vesicle and tube as in panel A) to 
rapid changes in aspiration pressure (gray line). Tube force equilibrates after membrane tension 
changes within < 100 ms for homogeneous vesicles. Similar behavior was observed for 
homogeneous Ld phase and pure POPC vesicles. 
 
Figure S3. Curvature-induced domain nucleation and growth is distinct from diffusion of pre-
existing microdomains. A) Fluorescence image i shows a dimly fluorescent tube that is entirely 
in the Lo phase. The aspiration pressure was 16 Pa (σres = 0.027 mN/m). The portion of the 
vesicle shown on the left shows a small micron-sized Ld phase domain (bright line) amid a 
majority Lo phase. The pulling bead is illustrated with a white dashed circle on the right. The 
microdomain showed diffusive mobility on the vesicle, but on approaching the neck region is 
attracted by the neck, as seen in image ii.  Tube phase boundary position is indicated by white 
arrows. In iii-v, the microdomain continues to invade the tube, likely by curvature-induced 
domain area growth, reaching a length of 5 µm by image v. B) Pulling force immediately before 
and after a microdomain was locked at the tube neck. The constant force leading up to image i is 
evidence of a constant tube composition. At the moment of contact of the Ld microdomain with 
the tube neck, the force drops within < 1 s. Further invasion of the Lo phase by means of the 
growing domain locked at the neck did not measurably alter the tube force, in contrast to domain 
growth following nucleation at the tube neck (see Fig. 2). C) Similar force drops are observed for 
two additional vesicles in which a small Ld domain became trapped at the tube neck. Tube force 
here is normalized relative to the initial tube force for each vesicle, with force drops ranging 
between 37% and 49%. Force drops are observed to occur on similar (fast) time scales compared 
to slow (several minutes) force decay during domain nucleation and growth. 
 
Figure S4. A) Phase diagram for ternary mixtures of DOPC, DPPC, and cholesterol showing part 
of the binodal line indicating the region of Lo-Ld phase coexistence(17). Ten compositions 
leading to homogeneous vesicles of either Lo (dark gray circles) or Ld phase (light gray circles) 
are indicated; these compositions are numbered and refer to compositions listed in Table S1. The 
nominal composition of the phase-separated mixture used in domain growth experiments is 
shown by the open circle. B) Equilibrium tube force as a function of the square-root of 
membrane tension for homogenous Lo (black) and Ld (gray) phase vesicles, the slopes of which 
are proportional to the bending stiffness of each composition; the Lo phase vesicle corresponds 
to composition Lo2 and has a bending stiffness of 3.0·10-19 J, while the Ld phase vesicle 
corresponds to composition Ld3 and has a bending stiffness of 0.6·10-19 J (see Table 

 9



S1).  Linearity of force response indicates minimal curvature dependence of tube composition 
over curvature range explored(18, 19). 
 
Figure S5. Apparent bending stiffness decays during domain growth. A) An aspirated phase-
separated vesicle with tube maintains a constant force (gray line) prior to domain nucleation for 
times between -100 and zero seconds; see image i in panel B). Force begins to decrease when a 
domain nucleates (defining time zero) and grows in length, as evidenced in images ii-iv. The 
apparent bending stiffness (black line) over time is calculated from the pulling force and the 
(fixed) reservoir tension. After 700 seconds of domain growth at a constant reservoir lateral 
tension (σres = 0.08 mN/m), the apparent bending stiffness had decreased by a factor of 2.7. B) 
Fluorescence images showing the Lo phase of the aspirated vesicle on the left attached to the 
bead on the right with a tube. The 8 µm tube was initially entirely in the Lo phase (image i) and 
was dimly fluorescent. By image ii, a 4.2 µm domain was visible. This domain continued to 
grow in length towards the end of the tube as shown in images iii and iv. 
 
Figure S6. Areas of intra-tube (secondary) domains are not affected by curvature. A domain 
which was pulled entirely into the tube was modulated in radius and, therefore, length by 
changing the reservoir tension. Slope of linear fit (thick line) is proportional to domain area, and 
the fit extrapolates to near-zero for vanishing lateral tension, i.e. zero curvature and infinite 
radius. The constant slope and zero intercept suggest constant domain area (and bending 
stiffness) while changing curvature. 
 
Figure S7. Geometric and mechanical domain growth data obtained from computational shape 
series are similar to experimental data. Total tube length was fixed at 10 μm for all calculated 
shapes. A) Domain length as a function of time for six different membrane tensions; legend in 
panel B) applies to panels A-D). Time axes were obtained in an iterative fashion from analytical 
irreversible thermodynamics model, considering leading-edge domain boundary curvature and 
the total domain length obtained from shapes such as displayed in Fig. 4. The parameter A 
(necessary to calculate the time axis, see the main text) was chosen to be 6.67·10-4 μm4/s, in 
order to approximate experimental time axes (Fig 2). Calculations assume bending stiffnesses for 
Lo and Ld phases of 364 pN·nm and 81 pN·nm, respectively, corresponding to experimentally 
measured values. Line tension assumed here is 0.16 pN, as measured in phase-separated vesicles 
with the same composition as used for domain growth experiments. Gaussian bending stiffness 
difference is assumed to be zero. B) Domain length as a function of the square-root of time; 
roughly linear relationships are observed (at small observation times). C) Time dependence of 
tube force. D) Calculated tube force shows a linear dependence on domain length, regardless of 
applied membrane tension, in agreement with experiments (compare to Fig. 2D). 
 
Figure S8. Exact values of line tensions have small effects on calculated shapes. All tube shapes 
were calculated assuming a total tube length of 10 μm, lateral tension was 0.020 mN/m, and the 
parameter A (necessary to calculate a time axis, see Eq. 1 of the main text) was chosen to be 6.67 
10-4 μm4/s. A) Domain length versus time for three different line tensions: vanishing (0 pN), 
experimentally measured (0.16 pN), and large (1pN). B) Tube force versus time, conditions 
identical to A). C) Tube force versus domain length. Remarkably, force/domain length relation is 
essentially identical before the force plateau, but differs for longer domain lengths. The force 
decay is larger in the presence of line tension, because line tension contributes an additional 
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lateral tension jump(7, 14). D) Effect of line tension on location of vesicle/tether phase 
boundary. Magnified view of tube neck is taken from shapes with equivalent domain lengths of 
6.8 μm, close to the force plateau region. Ld phase: gray lines, Lo phase: black. Large line 
tension is observed to pin the vesicle/tube phase boundary at the tether neck.  
 
Figure S9. Curvature-induced domains show parabolic growth and characteristic pulling force 
decay, vesicle II. A) Four domains were sequentially nucleated at the tube neck of a single 
vesicle (additional examples in Figs. 2 and S10) through step-wise total tube length extension 
followed by domain growth at constant total tube length (and reservoir tension) as shown in 
schematic i). Domain length as a function of time relative to the first moment of detectable 
fluorescence heterogeneity at the tube neck (ii). Closed circles, open circles, closed triangles, and 
open triangles: domains grown at pressures of 23±0.5 Pa, 30 Pa, 38 Pa, and 47 Pa, respectively, 
corresponding to the lateral tensions in panel D). B) Same data as in panel A) plotted versus t . 
Linear fits are shown as solid lines. C) Double logarithmic plot of the slopes of the linear fits in 
panel B) as a function of membrane tension for 6 different vesicles and 26 vesicle tensions. Slope 
of a linear fit yields 1.34 ± 0.12. D) Tube force is observed to decrease after domain nucleation 
and concomitant to growth. Black curve corresponds to the first domain generated (closed circles 
in panels A), B), and E)); lighter gray curves correspond to domains grown sequentially at 
increasing aspiration pressures as in A). E) Tube force as a function of domain length; symbols 
as in panel B). Solid lines are linear fits for domain lengths up to 10 μm. 
 
Figure S10. Curvature-induced domains show parabolic growth and characteristic pulling force 
decay, vesicle II. A) Three domains were sequentially nucleated at the tube neck of a single 
vesicle (additional examples in Figs. 2 and S9) through step-wise total tube length extension 
followed by domain growth at constant total tube length (and reservoir tension) as shown in 
schematic i). Domain length as a function of time relative to the first moment of detectable 
fluorescence heterogeneity at the tube neck (ii). Closed circles, open circles, and closed triangles: 
domains grown at pressures of 11±0.5 Pa, 25 Pa, and 41 Pa, respectively, corresponding to the 
lateral tensions in panel D). B) Same data as in panel A) plotted versus t . Linear fits are shown 
as solid lines. C) Double logarithmic plot of the slopes of the linear fits in panel B) as a function 
of membrane tension for 6 different vesicles and 26 vesicle tensions. Slope of a linear fit yields 
0.83 ± 0.08. D) Tube force is observed to decrease after domain nucleation and concomitant to 
growth. Black curve corresponds to the first domain generated [closed circles in panels A), B), 
and E)]; lighter gray curves correspond to domains grown sequentially at increasing aspiration 
pressures as in A). E) Tube force as a function of domain length; symbols as in panel B). Solid 
lines are linear fits for domain lengths up to 10 μm.  
 
Figure S11. Total tube volume from calculated shapes is predicted to increase as domain growth 
occurs, despite the narrower radius of the invading Ld phase relative to the Lo phase (as 
mandated by the difference in bending stiffnesses). Calculation shown is for total tube length of 
10 μm. Domain growth is accompanied by significant decreases in lateral tension of both phases 
in the tube as the Ld domain lateral tension approaches that of the fixed reservoir tension; this 
second effect plays a larger role than the first and results in a net increase in tube volume during 
domain growth up until the force plateau region is reached.  Percent increase is relative to a tube 
prior to domain nucleation, and is here shown for the example case of a reservoir tension of 
0.020 mN/m; other reservoir tensions considered showed nearly identical relative increases in 
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tube volume. Because the tube volume increase depends on the total length of the tube, any 
friction effects due to water transport among tube and vesicle must also depend on the total tube 
length. We found no evidence for total tube length dependence on domain growth kinetics (Figs 
2F and S1, and therefore rule out significant contribution from hydrodynamic friction to the 
observed tube growth (and force decay) dynamics. Instead, mass transfer resistance contributed 
by lipid diffusion, as expressed in Eq. 1 of the main text, appears to govern our experimentally 
observed time dependence. 
 
Supplementary table captions. 
Table S1. Compositions of homogeneous vesicles of the Lo or Ld phase as depicted in the phase 
diagram of Fig. S4, and corresponding bending stiffness results. Bending stiffness of a 
homogeneous vesicle is given by , where κ is the bending stiffness, f is the tube 
force, and σ is the membrane tension. The bending stiffness of an individual vesicle was 
determined from the slope of a plot of measured tube force as a function of the square-root of 
membrane tension. Note that these slopes were observed to be independent of curvature (as 
shown in Fig S4B), consistent with a composition regime far from the consolute point(19). Final 
values shown are the average of three to four tubes pulled from each of five different vesicles for 
a given composition; the exact number N of measurements for each average is given in 
parentheses. Uncertainties represent standard deviations and were dominated by inter-vesicle 
variability. Since no clear trend was present among the compositional variations, the bending 
stiffnesses of the Lo and Ld phase in a phase-separated vesicle were estimated – using the 
averages of the 5 compositions – to be 3.64 and 0.81 ·10

σπκ 22 8/f=

-19 J, respectively. 
 
Table S2. The slopes of linear fits such as in Fig 2B are squared to yield the diffusion coefficient 
AC2. The diffusion coefficients depend on curvature and, therefore, the vesicle membrane 
tension, and this dependence is here demonstrated for measurements within six different vesicles 
at varying membrane tensions. Vesicles A, B, and C correspond to the data shown in Figs 2A-D, 
S9, and S10, respectively.  This data is also shown collectively in Fig 2E.  
 
Supplementary movie captions. 
Movie 1. Ld phase tubes can be pulled out of Lo phase domain of a vesicle at low pulling 
speeds. A tube was pulled slowly from the ordered phase of the vesicle at an average pulling 
speed of about 0.04 μm/s. A continuous Ld tube was generated from the Lo phase of the vesicle.  
 
Movie 2. Lo phase tubes are pulled out of Lo phase domain of a vesicle at high pulling speeds. A 
tube was pulled at high speed of 1.5 μm/s, resulting in an Lo tube. Reservoir membrane tension 
for movies 1 and 2 was σ  = 3.5⋅10-5 N/m. 
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Table S1. Measured bending stiffnesses of homogenous vesicles in the Lo and Ld phase. 

 

 

Composition DPPC DOPC Chol κ (10
-19

 J) 

Lo1 52% 11% 37% 4.2±0.9 (N=17) 

Lo2 48% 13% 39% 3.2±0.7 (N=17) 

Lo3 46% 12% 42% 4.2±0.6 (N=24) 

Lo4 42% 15% 43% 4.0±0.7 (N=18) 

Lo5 39% 17% 44% 2.7±0.2 (N=19) 

Ld1 18% 68% 14% 0.82±0.06 (N=16) 

Ld2 17% 66% 17% 0.87±0.08 (N=18) 

Ld3 16% 64% 20% 0.73±0.09 (N=15) 

Ld4 17% 60% 23% 0.71±0.06 (N=16) 

Ld5 17% 57% 26% 0.94±0.12 (N=17) 

 



Table S2. Experimentally measured diffusion coefficients depend on membrane tension. 

Vesicle Membrane Tension (mN/m) Diffusion Coefficient (µm2/s) 

A 0.020±0.003 0.18±0.01 

A 0.027±0.005 0.30±0.01 

A 0.036±0.006 0.38±0.02 

A 0.044±0.008 0.59±0.02 

A 0.058±0.010 0.76±0.02 

A 0.071±0.012 1.42±0.03 

B 0.063±0.011 0.16±0.01 

B 0.083±0.014 0.41±0.02 

B 0.11±0.02 0.71±0.02 

B 0.13±0.02 1.10±0.02 

C 0.023±0.004 0.15±0.01 

C 0.053±0.009 0.71±0.02 

C 0.09±0.02 1.32±0.03 

D 0.054±0.009 0.10±0.01 

D 0.072±0.012 0.19±0.01 

D 0.09±0.02 0.26±0.01 

D 0.10±0.02 0.48±0.02 

D 0.12±0.02 0.71±0.02 

D 0.15±0.03 1.30±0.03 

E 0.056±0.009 0.26±0.01 

E 0.075±0.013 0.95±0.02 



E 0.10±0.02 1.72±0.03 

E 0.11±0.02 2.95±0.06 

F 0.045±0.008 0.19±0.01 

F 0.13±0.02 3.35±0.07 

F 0.18±0.03 6.45±0.13 

F 0.21±0.04 9.9±0.2 

 


