# **Supporting Information**

## Chen et al. 10.1073/pnas.0912702107

#### SI Methods

**Informed Consent.** All participants gave written informed consent, and the protocols were reviewed and approved by local institutional review boards.

**Study Design.** The participants in the original genome-wide association study were mainly collected at the University of Michigan in Ann Arbor (collection coordinated by A.S.), at the University of Pennsylvania in Philadelphia (coordinated by D.S.), and at the Mayo Clinic in Rochester, MN (coordinated by A.E.). Cases were classified according to age-related macular degeneration (AMD) diagnosis in the worse eye (neovascularization was considered to be the most severe outcome, large drusen were the least severe outcome). Controls were examined by an ophthalmologist and exhibited no signs of AMD in either eye (they had no large or intermediate drusen).

**Genotyping.** Genotyping used Illumina Human370 Bead Chips and the Illumina Infinium II assay protocol (1). Allele cluster definitions for each SNP were determined using Illumina BeadStudio Genotyping Module version 3.2.32 and the combined intensity data from 99% of the samples; the resulting cluster definitions were then used on all samples. Genotypes were not called if the quality threshold (gencall score) was <0.25. Genotypes were not released from the Center for Inherited Disease Research (CIDR) for SNPs that failed technical filters for call rate <85%, >1 HapMap replicate error, and >4% (autosomal) difference in call rate between sexes. Genotypes were released from CIDR for 344,942 (99.46%) of the attempted SNPs. Blind duplicate reproducibility was 99.992%.

**Genotype Imputation.** To expand the genome coverage, we performed a genome-wide imputation using haplotypes from the HapMap CEU samples as templates (release 22). Imputation was performed using MACH (www.sph.umich.edu/csg/abecasis/Mach/). For downstream analyses, we filtered out poorly imputed SNPs and focused on markers with estimated  $r^2$  between imputed and true genotypes >0.3.

**Statistical Analyses.** To investigate the association between each genotyped or imputed SNP and AMD, we first carried out a logistic regression for each SNP assuming the additive model and adjusting for the top two principal components of ancestry (PCA). At  $P < 10^{-6}$ , we identified a total of seven independently associated SNPs in previously reported loci (*CFH*, *ARMS2*, *C3*, *C2*/*CFB*, and *CFI*). These SNPs were included as covariates in

1. Gunderson KL, et al. (2006) Whole-genome genotyping. *Methods Enzymol* 410: 359–376.

logistic regression analyses designed to identify additional loci associated with AMD.

Analysis for Follow-Up Study. To combine the statistics across different groups for replication, we first selected an arbitrary reference allele for each marker and then calculated a z statistic summarizing the evidence for association in each study (summarizing both the P value, in its magnitude, and the direction of effect, in its sign). We then calculated an overall z statistic as a weighted average of the individual statistics and calculated the corresponding P value. Weights were proportional to the square root of effective sample size for each study and were selected such that the sum of squared weights = 1.0.

Association Testing. Association tests compared allele frequencies between cases and controls for each sample. For samples including only unrelated individuals, the data were also analyzed using simple logistic regression models with age and sex as covariates to verify robustness of results. For the discovery samples, the first two PCAs were used as covariates in all reported analyses, and genotypes for the markers listed in Table 2 (main text) were used as covariates in analyses designed to discover previously uncharacterized loci. For follow-up samples, genotypes at *CFH* and *ARMS2* were included as covariates where available. For samples including related individuals, the data were analyzed with the test of Thornton and McPeek (2).

Risk Prediction Approach. To evaluate the cumulative contribution of the alleles identified here to disease risk, we fitted a simple logistic regression model to the data. The effect of each genotype was modeled on a log-additive scale, with no interaction terms between genotypes. Effectively, the model calculates a weighted count of risk alleles at each locus (with each allele weighted by the corresponding locus specific log of the odds ratio). This weighted count corresponds to a fitted probability of disease, which can be used to sort genotypes from high to low predicted risk and to define deciles of fitted risk. We first counted the proportion of affected individuals in each risk decile. In a subsequent analysis, we assigned different weights to cases and controls, designed to reflect the fact that cases are enriched in our sample. Cases were assigned weight  $f_{case}/p_{case}$  and controls were assigned weight  $f_{control}/p_{control}$ , where  $p_{case} = 0.65$  and  $p_{control} = 0.35$  are the fractions of cases and controls in our sample and  $f_{case} = 0.20$  and  $f_{control} = 0.80$  are hypothetical fractions of cases and controls in an elderly population at age  $\approx$ 75 years. Taking these weights into account, we again divided the sample into deciles, this time ensuring that the summed weights in each decile were identical.

 Thornton T, McPeek MS (2007) Case-control association testing with related individuals: a more powerful quasi-likelihood score test. Am J Hum Genet 81:321–337.



**Fig. S1.** Regional plot of association signals in high-density lipoprotein cholesterol (HDL-c) and AMD. Detailed plots comparing HDL-c association signals (from the discovery sample of Kathiresan et al. [Kathiresan S, et al. (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. *Nat Genet* 41:56—65; *Left*]) and AMD association signals (from the discovery sample in the scan reported here; *Right*). The same marker and linkage disequilibrium proxies are highlighted in each row.



Deciles of Risk

Estimated Cumulative Impact of Associated SNPs in the Population

1.0



Deciles of Risk

Fig. S2. Multilocus genotypes and disease risk. Top: Summary of the proportion of affected individuals in each risk decile, with the highest risk decile on the left, when our sample is segregated according to the risk of disease predicted by a simple logistic regression model. Bottom: Equivalent predictions at the population level, after weighting cases and controls to take into account that our sample is enriched for cases (see SI Methods for details).

SANG SAL

| Table S1. | Summary | / description o | of discovery s | amples used | l in the g | enome-wide | association a | nd replication | studies |
|-----------|---------|-----------------|----------------|-------------|------------|------------|---------------|----------------|---------|
|-----------|---------|-----------------|----------------|-------------|------------|------------|---------------|----------------|---------|

|                               |        |             |                      | Cases              |                          |                    | Controls |             |                      |        |
|-------------------------------|--------|-------------|----------------------|--------------------|--------------------------|--------------------|----------|-------------|----------------------|--------|
| Sample                        | n      | Male<br>(%) | Age (y)<br>(Average) | Large<br>drusen(%) | Geographic<br>atrophy(%) | Neovascular<br>(%) | n        | Male<br>(%) | Age (y)<br>(average) | Total  |
| Discovery samples             |        |             |                      |                    |                          |                    |          |             |                      |        |
| Michigan                      | 786    | 36.9        | 79.8                 | 14.2               | 21.6                     | 64.2               | 516      | 41.5        | 76.6                 | 1,302  |
| Mayo Clinic                   | 535    | 36.1        | 77.3                 | 46.5               | 13.6                     | 39.8               | 433      | 46.7        | 70.2                 | 968    |
| AREDS                         | 440    | 41.0        | 80.8                 | None genotyped     | 26.8                     | 73.2               | 0        | 0           | 0                    | 440    |
| Pennsylvania                  | 396    | 40.4        | 75.7                 | 42.7               | 26.3                     | 31.0               | 201      | 45.3        | 76                   | 597    |
| Total                         | 2,157  | 38.2        | 78.6                 | 24.5               | 21.6                     | 53.9               | 1,150    | 44.1        | 74.1                 | 3,307  |
| Parallel discovery<br>samples |        |             |                      |                    |                          |                    |          |             |                      |        |
| Tufts/MGH*                    | 821    | 46.0        | 80.3                 | None genotyped     | 27.5                     | 72.5               | 1,709    | 46.0        | 76.0                 | 2,530  |
| Replication samples           |        |             |                      |                    |                          |                    |          |             |                      |        |
| Pittsburgh <sup>†</sup>       | 1,308  | 36.7        | 69.9                 | 9.7 <sup>†</sup>   | 18.9                     | 70.0               | 229      | 49.8        | 76.7                 | 1,537  |
| Miami/Duke/                   | 1,157  | 35.1        | 75.7                 | 28.3               | 13.6                     | 58.2               | 514      | 40.5        | 68.4                 | 1,671  |
| Vanderbilt                    |        |             |                      |                    |                          |                    |          |             |                      |        |
| Tufts/MGH II                  | 868    | 40.0        | 79.7                 | None genotyped     | 28.3                     | 71.7               | 789      | 40.0        | 73.0                 | 1,657  |
| Johns Hopkins <sup>†</sup>    | 665    | 32.8        | 75.5                 | 21.8 <sup>†</sup>  | 12.4                     | 57.2               | 131      | 31.3        | 74.7                 | 796    |
| Penn-NJ                       | 556    | 39.8        | 79.8                 | 19.1               | 6.8                      | 65.5               | 347      | 47.0        | 75.6                 | 903    |
| Oregon                        | 515    | 34.0        | 79.8                 | None genotyped     | 27.2                     | 72.8               | 263      | 45.0        | 74.0                 | 778    |
| Massachusetts E. E. I.        | 391    | 40.4        | 76.0                 | 10.5               | 1.3                      | 73.6               | 194      | 44.6        | 75.4                 | 585    |
| Spain (IDIS-Sgo)              | 353    | 46.2        | 76.7                 | None genotyped     | 16.1                     | 83.9               | 282      | 44.7        | 75.1                 | 635    |
| Case Western                  | 1,258  | 43.5        | 78.5                 | 32.6               | 9.2                      | 40.5               | 1,540    | 50.7        | 72.5                 | 2,798  |
| Reserve                       |        |             |                      |                    |                          |                    |          |             |                      |        |
| Total                         | 7,071  | 41.1        | 76.2                 | 14.9               | 14.0                     | 65.8               | 4,289    | 45.5        | 73.0                 | 11,360 |
| Non-European<br>samples       |        |             |                      |                    |                          |                    |          |             |                      |        |
| Japan                         | 678    | 69.0        | 74.8                 | None genotyped     | 0.0                      | 100.0              | 336      | 42.0        | 74.2                 | 1,014  |
| Grand total <sup>†</sup>      | 10,727 | 40.9        | 77.0                 | 15.7               | 16.6                     | 64.0               | 7,484    | 45.3        | 73.9                 | 18,211 |

\*The Tufts/MGH samples used here exclude 158 AREDS samples that overlap with our discovery sample.

<sup>†</sup>Proportions of cases with large drusen, geographic atrophy, and neovascular disease do not add up to 100.0% because 8.6% of cases from Johns Hopkins and 0.4% of cases from Pittsburgh had intermediate drusen.

#### Table S2. Association results of some published candidate SNPs in our scan

SANG SANG

| Gene     | SNP       | Risk allele/<br>other | P value in original report | Original<br>report | P value in discovery sample | P value in discovery<br>sample, after adjusting<br>for known loci | Direction of effect,<br>vs. original report |
|----------|-----------|-----------------------|----------------------------|--------------------|-----------------------------|-------------------------------------------------------------------|---------------------------------------------|
| TLR3     | rs3775291 | C/T                   | $1.2 \times 10^{-7}$       | 1                  | 0.526                       | 0.885                                                             | Opposite                                    |
| TLR4     | rs4986790 | G/A                   | 0.001                      | 2                  | 0.552                       | 0.091                                                             | Same                                        |
| SERPING1 | rs2511989 | G/A                   | $7.5 	imes 10^{-8}$        | 3                  | 0.944                       | 0.923                                                             | Same                                        |
| ERCC6    | rs3793784 | G/C                   | 0.020                      | 4                  | 0.961                       | 0.480                                                             | Same                                        |
| LRP6     | rs7294695 | C/G                   | 0.020                      | 5                  | 0.543                       | 0.867                                                             | Same                                        |
| CX3CR1   | rs3732378 | A/G                   | 0.002                      | 6                  | 0.150                       | 0.100                                                             | Same                                        |
| IL8      | rs4073    | T/A                   | 0.037                      | 7                  | 0.578                       | 0.301                                                             | Same                                        |
| VEGF     | rs2010963 | C/G                   | 0.020                      | 5                  | 0.302                       | 0.320                                                             | Same                                        |
| VLDLR    | rs2290465 | C/G                   | 0.010                      | 5                  | 0.782                       | 0.402                                                             | Same                                        |

Previously associated SNPs near APOE and ABCA4 are not listed because they were not genotyped in our sample and could not be imputed confidently using either 1,000 Genomes or HapMap reference haplotypes.

1. Yang Z, et al. (2008) Toll-like receptor 3 and geographic atrophy in age-related macular degeneration. N Engl J Med 359:1456–1463.

2. Zareparsi S, et al. (2005) Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration. Hum Mol Genet 14:1449–1455.

3. Ennis S, et al. (2008) Association between the SERPING1 gene and age-related macular degeneration: a two-stage case-control study. Lancet 372:1828–1834.

4. Tuo J, et al. (2006) Synergic effect of polymorphisms in ERCC6 5' flanking region and complement factor H on age-related macular degeneration predisposition. Proc Natl Acad Sci USA 103:9256–9261.

5. Haines JL, et al. (2006) Functional candidate genes in age-related macular degeneration: significant association with VEGF, VLDLR, and LRP6. Invest Ophthalmol Vis Sci 47:329–335.

6. Tuo J, et al. (2004) The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration. FASEB J 18:1297–1299. 7. Goverdhan SV, et al. (2008) Interleukin-8 promoter polymorphism -251A/T is a risk factor for age-related macular degeneration. Br J Ophthalmol 92:537–540.

Table S3. Complete results for all SNPs where replication attempted

PNAS PNAS

| Combined              | $1.1 \times 10^{-11}$ | $1.3 \times 10^{-7}$ | $7.4 \times 10^{-7}$ | $2.0 \times 10^{-6}$ | $4.4 \times 10^{-6}$ | $1.1 \times 10^{-5}$ | $2.4 \times 10^{-5}$ | $3.3 \times 10^{-5}$ | $4.4 	imes 10^{-5}$  | $5.2 	imes 10^{-5}$  | $6.3 \times 10^{-5}$ | $8.9 \times 10^{-5}$ | $1.7 \times 10^{-4}$ | $2.0 	imes 10^{-4}$  | $2.7 \times 10^{-4}$ | $4.1 	imes 10^{-4}$  | $5.2 	imes 10^{-4}$  | $5.7 	imes 10^{-4}$ | $6.1 	imes 10^{-4}$ | $6.5	imes10^{-4}$    | $7.6 \times 10^{-4}$ | $7.7 	imes 10^{-4}$  | $1.0 \times 10^{-3}$ | $1.3 \times 10^{-3}$ | $1.5 \times 10^{-3}$ | $3.2 \times 10^{-3}$ | $5.4 	imes 10^{-3}$  | $2.0 \times 10^{-2}$ | $2.8 \times 10^{-2}$ | $2.6 \times 10^{-1}$ | direction of<br>ation is only                                         |
|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------------------------------------------------------|
| Japan                 | 0.093                 | 0.101                | 0.004                |                      | I                    | I                    | I                    | I                    | I                    | I                    | I                    | I                    |                      | I                    | I                    | I                    | I                    |                     | I                   | I                    | I                    | I                    |                      | I                    |                      | 0.334                |                      |                      | I                    | Ι                    | 1532,<br>of associ                                                    |
| Miami DukeVanderbilt  | 0.037                 | Ι                    | 0.007                | 0.039                | 0.091                | 0.044                | 0.932                | 0.073                | 0.071                | 0.361                | 0.520                | 0.845                | 0.560                | 0.636                | 0.322                | 0.675                | 0.923                | 0.429               | 0.759               | 0.638                | 0.714                | 0.353                | 0.825                | 0.549                | 0.484                | 0.193                | 0.779                | 0.401                | 0.667                | 0.715                | te that for our top SNP, rs9<br>, for rs3764261, direction (          |
| Pitt                  | 0.006                 | 0.052                | 0.530                | 0.950                | 0.531                | 0.459                | 0.001                | 0.439                | 0.453                | I                    | 0.385                | 0.047                | 0.621                | 0.417                | 0.631                | I                    | 0.113                | 0.109               | 0.483               | 0.382                | 0.466                | 0.631                | 0.908                | 0.834                | 0.050                | 0.243                | 0.112                | 0.642                | 0.446                | 0.159                | iple. No<br>. Finally                                                 |
| Case Western          | 0.150                 | 0.095                | I                    | I                    | I                    | I                    | I                    | I                    | 0.095                | Ι                    | 0.060                | 0.100                | 0.425                | I                    | I                    | I                    | Ι                    | 0.135               | Ι                   | I                    | Ι                    | I                    | I                    | 0.305                | I                    | I                    | I                    | I                    | I                    | 0.985                | e discovery sam<br>rross all samples                                  |
| MEEI (                | 0.060                 | 0.441                | 0.166                | 0.453                | 0.136                | 0.265                | 0.080                | Ι                    | I                    | 0.100                | Ι                    | 0.375                |                      | Ι                    | I                    | Ι                    | I                    | 0.798               | I                   | Ι                    | I                    | Ι                    | I                    | 0.841                | 0.365                | I                    | I                    | 0.872                | I                    | I                    | it with th<br>sistent ac                                              |
| Spain IDIS            | 0.249                 | 0.456                | 0.126                |                      | I                    | Ι                    |                      | Ι                    | Ι                    | I                    | Ι                    | Ι                    | I                    | I                    | I                    | Ι                    | I                    | 0.119               | I                   | Ι                    | I                    | Ι                    | Ι                    |                      | 0.671                | 0.416                | I                    |                      |                      | I                    | n is consisten<br>n is also con                                       |
| Oregon                | 0.018                 | 0.118                | 0.114                | Ι                    | Ι                    | Ι                    | Ι                    | Ι                    | 0.071                | Ι                    | 0.875                | 0.242                | 0.649                | Ι                    | Ι                    | Ι                    | 0.711                | 0.020               | Ι                   | Ι                    | 0.84                 | Ι                    | I                    | 0.319                | 0.105                | 0.392                | 0.302                | I                    | Ι                    | 0.808                | f associatior<br>f associatio                                         |
| Penn-NJ               | 0.001                 | 0.229                | 0.153                | I                    | I                    | I                    | I                    | I                    | I                    | I                    | Ι                    | I                    | I                    | I                    | I                    | Ι                    | I                    |                     | I                   | I                    | I                    | I                    | I                    | I                    | 0.170                | I                    | I                    | I                    | I                    |                      | ection of<br>rection o                                                |
| ΠΗΓ                   | 0.005                 | 0.045                | 0.866                | I                    | Ι                    | I                    | I                    | I                    | I                    | I                    | 0.495                | 0.162                | 0.265                | Ι                    | I                    | Ι                    | I                    | I                   | I                   | I                    | 0.050                | I                    | I                    | 0.139                | I                    | I                    | I                    | I                    | I                    | 0.252                | at the dir<br>93258, di                                               |
| Tufts/MGH replication | 0.175                 | 0.062                | Ι                    | Ι                    | Ι                    | Ι                    | Ι                    | Ι                    | 0.485                | Ι                    | 0.053                | 0.060                | I                    | Ι                    | Ι                    | Ι                    | Ι                    | Ι                   | Ι                   | Ι                    | Ι                    | Ι                    | Ι                    | 0.343                | I                    | I                    | 0.751                | I                    | I                    | 0.892                | value of <0.5 indicates th<br>second strongest SNP, rs4               |
| Tufts/MGH GWAS        | 0.008                 | 0.0003               | 0.070                | 0.475                | 0.002                | 0.035                | 0.0002               | 0.0005               | 0.010                | 0.493                | 0.012                | I                    | 0.003                | 0.024                | 0.004                | 0.045                | 0.002                | Ι                   | Ι                   | 0.055                | 0.002                | 0.0001               | 0.003                | 0.006                | I                    | I                    | 0.023                | 0.711                | 0.814                | 0.153                | ne sided, so that a <i>P</i> ,<br>s examined. For our s<br>s samples. |
| GWAS                  | $3.9 \times 10^{-5}$  | $2.1 \times 10^{-3}$ | $1.7 \times 10^{-6}$ | $3.8 \times 10^{-5}$ | $3.5 \times 10^{-4}$ | $6.5 \times 10^{-5}$ | $8.6 \times 10^{-3}$ | $1.5 \times 10^{-2}$ | $2.0 \times 10^{-3}$ | $1.6 \times 10^{-3}$ | $6.5 \times 10^{-5}$ | $9.5 \times 10^{-7}$ | $5.2 \times 10^{-6}$ | $3.8 \times 10^{-5}$ | $1.9 \times 10^{-3}$ | $6.9 \times 10^{-5}$ | $8.3 \times 10^{-4}$ | $2.6 \times 1^{-3}$ | $2.0 	imes 10^{-6}$ | $8.6 \times 10^{-5}$ | $1.3 \times 10^{-3}$ | $5.7 \times 10^{-2}$ | $1.3 \times 10^{-4}$ | $1.4 \times 10^{-4}$ | $1.8 \times 10^{-3}$ | $1.8 \times 10^{-3}$ | $8.5 \times 10^{-4}$ | $8.5 \times 10^{-6}$ | $1.4 \times 10^{-5}$ | $4.0 \times 10^{-5}$ | amples are or<br>ss all samples<br>Pitt follow-up                     |
| Risk/ nonrisk         | AC                    | СŢ                   | AC                   | 5                    | T/C                  | T/G                  | AC                   | AC                   | CT<br>CT             | A/G                  | A/G                  | T/C                  | A/G                  | G/C                  | G/A                  | A/G                  | G/A                  | 5                   | G/A                 | 0/D                  | T/C                  | A/G                  | A/G                  | G/T                  | 5                    | G/A                  | T/C                  | G/A                  | 5                    | AC                   | s in follow-up s<br>consistent acro<br>the JHU and I                  |
| SNP                   | rs9621532             | rs493258             | rs3764261            | rs2958154            | rs11878133           | rs2142541            | rs17628762           | rs6022766            | rs9973159            | rs2127740            | rs6484926            | rs6982567            | rs10103849           | rs 8052081           | rs655464             | rs13142235           | rs1884807            | rs1883025           | rs11854497          | rs7737931            | rs12914520           | rs7704053            | rs17121872           | rs16848791           | rs10468017           | rs12678919           | rs12001032           | rs2892715            | rs6445063            | rs17296412           | All <i>P</i> values<br>association is<br>inconsistent in              |

| Table S4. | Sample-by | -sample resu | Its for new | y reported I | oci: rs9621532 | (A/C) near | TIMP3 |
|-----------|-----------|--------------|-------------|--------------|----------------|------------|-------|
|-----------|-----------|--------------|-------------|--------------|----------------|------------|-------|

|                            |            | Ca              | ses     |        |      | Controls |     |       |                   |                     |  |
|----------------------------|------------|-----------------|---------|--------|------|----------|-----|-------|-------------------|---------------------|--|
| Sample                     | A/A        | A/C             | C/C     | P(A)   | A/A  | A/C      | C/C | P(A)  | OR                | Р                   |  |
| Discovery                  | 2005       | 149             | 3       | 0.964  | 1022 | 125      | 3   | 0.943 | 1.81 (1.42, 2.29) | $3.9 	imes 10^{-5}$ |  |
| Tufts/MGH                  | 732        | 62              | 4       | 0.957  | 1466 | 163      | 3   | 0.947 | 1.31 (0.98, 1.74) | 0.016               |  |
| Tufts/MGH II               | 777        | 69              | 4       | 0.955  | 703  | 75       | 1   | 0.951 | 1.09 (0.85, 1.51) | 0.350               |  |
| Johns Hopkins              | 626        | 37              | 1       | 0.971  | 113  | 16       | 0   | 0.938 | 2.21 (1.22, 4.03) | 0.008               |  |
| Penn-NJ                    | 510        | 46              | 0       | 0.959  | 295  | 52       | 0   | 0.925 | 1.90 (1.26, 2.86) | 0.002               |  |
| Oregon                     | 452        | 24              | 0       | 0.975  | 229  | 23       | 0   | 0.954 | 1.88 (1.05, 3.37) | 0.036               |  |
| Spain(IDIS-Sgo)            | 330        | 17              | 0       | 0.976  | 259  | 17       | 0   | 0.969 | 1.27 (0.64, 2.50) | 0.498               |  |
| Massachusetts E.E.I.*      | 345        | 39              | 0       | 0.949  | 163  | 26       | 1   | 0.926 | 1.49 (0.90, 2.46) | 0.119               |  |
| Case Western Reserve       | 1124       | 95              | 8       | 0.955  | 1370 | 147      | 3   | 0.950 | 1.12 (0.87, 1.44) | 0.300               |  |
| Pittsburgh*                | 169        | 10              | 0       | 0.972  | 130  | 10       | 1   | 0.957 | 1.55 (0.66, 3.63) | 0.011               |  |
| Miami/Duke/Vanderbilt*     | 629        | 69              | 4       | 0.945  | 218  | 30       | 1   | 0.936 | 1.18 (0.77, 1.81) | 0.074               |  |
| Japan                      | 617        | 37              | 1       | 0.970  | 303  | 27       | 0   | 0.959 | 1.38 (0.84, 2.28) | 0.195               |  |
| Test of heterogeneity: Q = | = 11.47, d | f = 9, <i>P</i> | value = | 0.2448 |      |          |     |       |                   |                     |  |

\*Note that for datasets that include related individuals (Pittsburgh, Miami/Due/Vanderbilt, and Massachusetts. E.E. I.), this samples counts include only unrelated individuals. Thus, the results differ from those in Table 3 in the main paper, where all available samples were analyzed using the method of Thornton and McPeek. The tabulated *P* values are calculated from the complete family data set. *P* values are two sided.

| Table 55. Sample-by-sample results for newly reported loci: rs495258 (C/T) hear | ample results for newly reported loci: rs493258 (C/T) n | iear LIPC |
|---------------------------------------------------------------------------------|---------------------------------------------------------|-----------|
|---------------------------------------------------------------------------------|---------------------------------------------------------|-----------|

|                            |            | Cas      | ses    |       |     | Con | trols |       |                   |       |
|----------------------------|------------|----------|--------|-------|-----|-----|-------|-------|-------------------|-------|
| Sample                     | C/C        | C/T      | T/T    | P(C)  | C/C | C/T | T/T   | P(C)  | OR                | Р     |
| Discovery                  | 691        | 1053     | 413    | 0.564 | 323 | 569 | 258   | 0.528 | 1.21 (1.10, 1.34) | 0.002 |
| Tufts/MGH                  | 260        | 391      | 147    | 0.579 | 470 | 782 | 380   | 0.524 | 1.25 (1.11, 1.41) | 0.001 |
| Tufts/MGH II               | 254        | 428      | 172    | 0.548 | 213 | 387 | 182   | 0.520 | 1.12 (0.98, 1.29) | 0.124 |
| Johns Hopkins              | 203        | 315      | 119    | 0.566 | 35  | 58  | 33    | 0.508 | 1.26 (0.96, 1.66) | 0.090 |
| Penn-NJ                    | 193        | 273      | 90     | 0.593 | 110 | 179 | 58    | 0.575 | 1.08 (0.89, 1.31) | 0.458 |
| Oregon                     | 167        | 228      | 104    | 0.563 | 78  | 111 | 63    | 0.530 | 1.14 (0.92, 1.42) | 0.235 |
| Spain(IDIS-Sgo)            | 104        | 164      | 79     | 0.536 | 82  | 128 | 64    | 0.533 | 1.01 (0.81, 1.27) | 0.911 |
| Massachusetts E.E.I.*      | 128        | 159      | 88     | 0.553 | 52  | 88  | 35    | 0.549 | 1.02 (0.79, 1.31) | 0.822 |
| Case Western Reserve       | 366        | 595      | 217    | 0.563 | 404 | 726 | 300   | 0.536 | 1.12 (1.00, 1.24) | 0.190 |
| Pittsburgh*                | 66         | 70       | 39     | 0.577 | 52  | 64  | 35    | 0.556 | 1.09 (0.80, 1.49) | 0.104 |
| Miami/Duke/Vanderbilt*     | 222        | 337      | 131    | 0.566 | 65  | 149 | 31    | 0.569 | 0.99 (0.80, 1.21) | _     |
| Japan                      | 35         | 200      | 408    | 0.210 | 10  | 102 | 217   | 0.185 | 1.17 (0.94, 1.46) | 0.202 |
| Test of heterogeneity: Q = | = 6.96, df | = 9, P = | 0.6412 |       |     |     |       |       |                   |       |

\*Note that for datasets that include related individuals (Pittsburgh, Miami/Due/Vanderbilt, and Massachusetts. E.E. I.), this samples counts include only unrelated individuals. Thus, the results differ from those in Table 3 in the main paper, where all available samples were analyzed using the method of Thornton and McPeek. The tabulated *P* values are calculated from the complete family data set. *P* values are two sided.

SANG SANG

| Table S6. | Sample-by-sample | e results for newly | reported loci: rs3764261 | (A/C) near CETF |
|-----------|------------------|---------------------|--------------------------|-----------------|
|-----------|------------------|---------------------|--------------------------|-----------------|

|                            |         | Ca                | ses      |       |     | Con | trols |       |                   |                        |
|----------------------------|---------|-------------------|----------|-------|-----|-----|-------|-------|-------------------|------------------------|
| Sample                     | A/A     | A/C               | C/C      | P(A)  | A/A | A/C | C/C   | P(A)  | OR                | Р                      |
| Discovery                  | 296     | 979               | 882      | 0.364 | 118 | 486 | 546   | 0.314 | 1.36 (1.26, 1.46) | 1.7 × 10 <sup>-6</sup> |
| Tufts/MGH                  | 104     | 377               | 340      | 0.356 | 216 | 784 | 709   | 0.329 | 1.13 (1.00, 1.28) | 0.140                  |
| Tufts/MGH II               | _       | _                 | _        | _     | _   | _   | _     | _     | _                 | _                      |
| Johns Hopkins              | 87      | 293               | 261      | 0.364 | 24  | 50  | 48    | 0.402 | 0.85 (0.70, 1.04) | 0.268                  |
| Penn-NJ                    | 58      | 251               | 247      | 0.330 | 31  | 151 | 165   | 0.307 | 1.11 (0.96, 1.29) | 0.306                  |
| Oregon                     | 60      | 252               | 197      | 0.365 | 26  | 117 | 110   | 0.334 | 1.15 (0.98, 1.34) | 0.227                  |
| Spain(IDIS-Sgo)            | 33      | 145               | 170      | 0.303 | 22  | 107 | 147   | 0.274 | 1.15 (0.97, 1.37) | 0.252                  |
| Massachusetts E.E.I.*      | 45      | 178               | 163      | 0.347 | 17  | 87  | 86    | 0.318 | 1.14 (0.95, 1.37) | 0.332                  |
| Case Western Reserve       | _       | _                 | _        | _     | _   | _   | _     | _     | _                 | _                      |
| Pittsburgh*                | 24      | 77                | 69       | 0.368 | 18  | 55  | 70    | 0.318 | 1.25 (0.99, 1.58) | 0.940                  |
| Miami/Duke/Vanderbilt*     | _       | _                 | _        | _     | _   | _   | _     | _     | _                 | _                      |
| Japan                      | 31      | 228               | 395      | 0.222 | 17  | 80  | 236   | 0.171 | 1.39 (1.17, 1.65) | 0.008                  |
| Test of heterogeneity: Q = | 4.18, d | f = 6, <i>P</i> : | = 0.6524 |       |     |     |       |       |                   |                        |

\*Note that for datasets that include related individuals (Pittsburgh, Miami/Due/Vanderbilt, and Massachusetts. E.E. I.), this samples counts include only unrelated individuals. Thus, the results differ from those in Table 3 in the main paper, where all available samples were analyzed using the method of Thornton and McPeek. The tabulated *P* values are calculated from the complete family data set. *P* values are two sided.

| Table S7. | Sample-by-sample | results for newly | reported loci: | rs12678919 (G/A) near LP | 'L |
|-----------|------------------|-------------------|----------------|--------------------------|----|
|-----------|------------------|-------------------|----------------|--------------------------|----|

|                            |            | Cá         | Cases  |       |     | Controls |     |       |                   |       |  |
|----------------------------|------------|------------|--------|-------|-----|----------|-----|-------|-------------------|-------|--|
| Sample                     | G/G        | G/A        | A/A    | P(G)  | G/G | G/A      | A/A | P(G)  | OR                | Ρ     |  |
| Discovery                  | 23         | 448        | 1686   | 0.115 | 9   | 206      | 939 | 0.097 | 1.38 (1.17, 1.63) | 0.002 |  |
| Tufts/MGH                  | _          | _          | _      | _     | _   | _        | _   | _     | _                 | _     |  |
| Tufts/MGH II               | _          | _          | _      | _     | _   | _        | _   | _     | —                 | _     |  |
| Johns Hopkins              | _          | _          | _      | _     | _   | _        | _   | _     | _                 | _     |  |
| Penn-NJ                    | _          | _          | _      | _     | _   | _        | _   | _     | —                 | _     |  |
| Oregon                     | 6          | 85         | 416    | 0.096 | 2   | 42       | 208 | 0.091 | 1.06 (0.73, 1.53) | 0.783 |  |
| Spain(IDIS-Sgo)            | 2          | 81         | 162    | 0.173 | 5   | 63       | 149 | 0.168 | 1.04 (0.74, 1.46) | 0.832 |  |
| Massachusetts. E.E.I.*     | _          | _          | _      | _     | _   | _        | _   | _     | —                 | _     |  |
| Case Western Reserve       | _          | _          | _      | _     | _   | _        | _   | _     | _                 | _     |  |
| Pittsburgh*                | 1          | 32         | 141    | 0.098 | 1   | 21       | 127 | 0.077 | 1.30 (0.75, 2.27) | 0.486 |  |
| Miami/Duke/Vanderbilt*     | 5          | 139        | 555    | 0.107 | 3   | 40       | 203 | 0.093 | 1.17 (0.83, 1.66) | 0.385 |  |
| Japan                      | 10         | 141        | 496    | 0.124 | 6   | 64       | 253 | 0.118 | 1.06 (0.80, 1.42) | 0.668 |  |
| Test of heterogeneity: Q = | = 0.62, df | f = 3, P = | 0.9826 |       |     |          |     |       |                   |       |  |

\*Note that for datasets that include related individuals (Pittsburgh, Miami/Due/Vanderbilt, and Massachusetts. E.E. I.), this samples counts include only unrelated individuals. Thus, the results differ from those in Table 3 in the main paper, where all available samples were analyzed using the method of Thornton and McPeek. The tabulated *P* values are calculated from the complete family data set. *P* values are two sided.

SANG SANG

| Table S8. | Sample-by-s | sample results | for newly re | eported loci: | rs1883025 (G/A | ) near ABCA1 |
|-----------|-------------|----------------|--------------|---------------|----------------|--------------|
|-----------|-------------|----------------|--------------|---------------|----------------|--------------|

|                            |          | Cases             |        |       |     | Con | trols |       |                   |       |
|----------------------------|----------|-------------------|--------|-------|-----|-----|-------|-------|-------------------|-------|
| Sample                     | G/G      | G/A               | A/A    | P(G)  | G/G | G/A | A/A   | P(G)  | OR                | Р     |
| Discovery                  | 1171     | 845               | 141    | 0.739 | 571 | 480 | 99    | 0.705 | 1.25 (1.12, 1.40) | 0.003 |
| Tufts/MGH                  | _        | _                 | _      | _     | _   | _   | _     | _     | _                 | _     |
| Tufts/MGH II               | _        | _                 | _      | _     | _   | _   | _     | _     | _                 | _     |
| Johns Hopkins              | _        | _                 | _      | _     | _   | _   | _     | _     | _                 | _     |
| Penn-NJ                    | _        | _                 | _      | _     | _   | _   | _     | _     | _                 | _     |
| Oregon                     | 299      | 180               | 27     | 0.769 | 126 | 111 | 15    | 0.720 | 1.29 (1.01, 1.65) | 0.039 |
| Spain(IDIS-Sgo)            | 174      | 155               | 17     | 0.727 | 143 | 97  | 35    | 0.696 | 1.16 (0.91, 1.49) | 0.238 |
| Massachusetts. E.E. I.*    | 205      | 138               | 42     | 0.712 | 98  | 79  | 10    | 0.735 | 0.89 (0.67, 1.17) | 0.405 |
| Case Western Reserve       | 713      | 418               | 67     | 0.770 | 821 | 563 | 77    | 0.755 | 1.09 (0.96, 1.23) | 0.270 |
| Pittsburgh*                | 104      | 66                | 7      | 0.774 | 89  | 45  | 12    | 0.764 | 1.06 (0.73, 1.53) | 0.318 |
| Miami/Duke/Vanderbilt*     | 378      | 275               | 47     | 0.736 | 130 | 98  | 20    | 0.722 | 1.08 (0.86, 1.36) | 0.858 |
| Japan                      | _        | _                 | _      | _     | _   | _   | _     | _     | _                 | _     |
| Test of heterogeneity: Q = | 4.25, df | = 5, <i>P</i> = ( | 0.5137 |       |     |     |       |       |                   |       |

\*Note that for datasets that include related individuals (Pittsburgh, Miami/Due/Vanderbilt and Massachusetts. E.E. I.), this samples counts include only unrelated individuals. Thus, the results differ from those in Table 3 in the main paper where all available samples were analyzed using the method of Thornton and McPeek. The tabulated *P* values are calculated from the complete family data set. P values are two sided.

Table S9. Best genotyped proxy SNPs for reported loci

PNAS PNAS

| SNP        | Chromosome | Position    | Gene        | P value at<br>imputed SNP | Best genotyped<br>proxy | Allele 1/<br>allele2 | Cases<br>1/1 1/2 2/2 | Controls<br>1/1 1/2 2/2 | Rsq  | P value at genotyped SNP* |
|------------|------------|-------------|-------------|---------------------------|-------------------------|----------------------|----------------------|-------------------------|------|---------------------------|
| rs10737680 | 1          | 194,946,078 | CFH         | $1.6 	imes 10^{-76}$      | rs1329428               | A/G                  | 86/685/1384          | 214/571/365             | 1.00 | $5.2 \times 10^{-76}$     |
| rs3793917  | 10         | 124,209,265 | ARMS2/HTRA1 | $4.1 	imes 10^{-60}$      | rs6585827               | G/A                  | 377/993/782          | 335/557/256             | 0.32 | 7.5 × 10 <sup>-22</sup>   |
| rs429608   | 6          | 32,038,441  | C2/CFB      | $2.5 \times 10^{-21}$     | rs429608                | A/G                  | 18/311/1827          | 27/311/812              | 1.00 | $2.5 \times 10^{-21}$     |
| rs2230199  | 19         | 6,669,387   | C3          | $1.0 	imes 10^{-10}$      | rs2250656               | G/A                  | 139/775/1243         | 107/491/552             | 0.08 | $1.3 \times 10^{-7}$      |
| rs2285714  | 4          | 110,858,259 | CFI         | $3.4 	imes 10^{-7}$       | rs2285714               | T/C                  | 462/1076/617         | 187/534/429             | 1.00 | $3.4 	imes 10^{-7}$       |
| rs1329424  | 1          | 194,912,799 | CFH         | $6.4 	imes 10^{-16}$      | rs2019724               | G/A                  | 271/998/886          | 432/546/172             | 0.79 | $1.3 	imes 10^{-14}$      |
| rs9380272  | 6          | 32,013,989  | C2/CFB      | $2.3 	imes 10^{-8}$       | rs9332702               | G/C                  | 0/67/2089            | 0/27/1123               | 0.50 | $1.1 \times 10^{-7}$      |
| rs9621532  | 22         | 31,414,511  | SYN3/TIMP3  | $3.9 \times 10^{-5}$      | rs135150                | C/T                  | 45/519/1592          | 32/330/787              | 0.14 | 0.001                     |
| rs493258   | 15         | 56,475,172  | LIPC        | $2.1 \times 10^{-3}$      | rs1532085               | A/G                  | 255/949/951          | 179/509/462             | 0.64 | 0.002                     |
| rs3764261  | 16         | 55,550,825  | CETP        | $1.4 	imes 10^{-6}$       | rs3764261               | T/G                  | 296/979/882          | 118/485/546             | 1.00 | $1.4 	imes 10^{-6}$       |

\*The second cluster is conditional on the five SNPs in the first cluster. The third cluster is conditional on the seven SNPs above. Marginally, the SNPs in second cluster are not significant.

Table S10. Association results in discovery sample for different analysis models

|            | Notable nearby genes | Analysis covariates    |                       |                                     |                                  |  |  |  |  |  |
|------------|----------------------|------------------------|-----------------------|-------------------------------------|----------------------------------|--|--|--|--|--|
| SNP        |                      | None                   | PCA                   | PCA and index SNPs at previous loci | PCA, previous loci, age, and sex |  |  |  |  |  |
| rs10737680 | CFH                  | $2.5 	imes 10^{-78}$   | $1.6 	imes 10^{-76}$  | _                                   | _                                |  |  |  |  |  |
| rs3793917  | ARMS2                | $1.7 	imes 10^{-60}$   | $4.1 	imes 10^{-60}$  | —                                   | _                                |  |  |  |  |  |
| rs429608   | C2/CFB               | $4.7 \times 10^{-21}$  | $2.5 \times 10^{-21}$ | —                                   | —                                |  |  |  |  |  |
| rs2230199  | C3                   | $3.6 	imes 10^{-11}$   | $1.0 	imes 10^{-10}$  | —                                   | —                                |  |  |  |  |  |
| rs2285714  | CFI                  | $8.0 	imes 10^{-8}$    | $3.4 	imes 10^{-7}$   | —                                   | —                                |  |  |  |  |  |
| rs9621532  | TIMP3                | $5.9 	imes 10^{-5}$    | $2.6 	imes 10^{-4}$   | $4.5 \times 10^{-5}$                | $7.1 \times 10^{-4}$             |  |  |  |  |  |
| rs493258   | LIPC                 | $5.1 	imes 10^{-3}$    | $6.9 	imes 10^{-3}$   | $3.6 	imes 10^{-3}$                 | $1.1 \times 10^{-2}$             |  |  |  |  |  |
| rs3764261  | CETP                 | $5.8 	imes 10^{-5}$    | $1.2 \times 10^{-4}$  | $4.6 	imes 10^{-6}$                 | $9.5 	imes 10^{-6}$              |  |  |  |  |  |
| rs12678919 | LPL                  | 1.7 × 10 <sup>-2</sup> | $2.0 \times 10^{-2}$  | $4.0 	imes 10^{-3}$                 | $2.9 	imes 10^{-3}$              |  |  |  |  |  |
| rs1883025  | ABCA1                | $3.4 	imes 10^{-3}$    | $6.4 	imes 10^{-3}$   | $5.2 \times 10^{-3}$                | $4.9 \times 10^{-3}$             |  |  |  |  |  |

## Table S11. Evaluation of association of loci with $P < 5 \times 10^{-8}$ overall in specific AMD subtypes

| Parameter                                 | rs10737680 (CFH)<br>Alleles (A/C) | rs3793917 ( <i>ARMS2</i> )<br>Alleles (G/C) | rs429608 (C2/CFB)<br>Alleles (G/A) | rs2230199 (C3)<br>Alleles (C/G) | rs2285714 ( <i>CFI</i> )<br>Alleles (T/C) | rs9621532 ( <i>TIMP3</i> )<br>Alleles (T/C) |
|-------------------------------------------|-----------------------------------|---------------------------------------------|------------------------------------|---------------------------------|-------------------------------------------|---------------------------------------------|
| Large drusen (529) vs.<br>control (1,150) | 2.69 (2.27, 3.20)                 | 2.36 (1.94, 2.87)                           | 2.03 (1.59, 2.59)                  | 1.66 (1.32, 2.08)               | 1.26 (1.08,1.45)                          | 1.47 (1.03, 2.12)                           |
|                                           | $2.2 \times 10^{-29}$             | $4.4 	imes 10^{-26}$                        | 1.8 × 10 <sup>-8</sup>             | 1.2 × 10 <sup>−5</sup>          | $2.3 \times 10^{-3}$                      | 0.03                                        |
| GA (465) vs. control (1,150)              | 3.85 (3.15, 4.71)*                | 3.68 (3.07, 4.42)                           | 2.46 (1.95, 3.10)*                 | 2.00 (1.62, 2.46)*              | 1.38 (1.21,1.57)*                         | 1.31 (0.91, 1.88)                           |
|                                           | $1.0 	imes 10^{-39}$              | $1.7 	imes 10^{-44}$                        | $2.0 	imes 10^{-14}$               | $6.3 	imes 10^{-11}$            | $1.4 	imes 10^{-6}$                       | 0.14                                        |
| Neovascular (1,163) vs.                   | 3.15 (2.73, 3.63)                 | 4.28 (3.63, 5.04)*                          | 2.16 (1.79,2.61)                   | 1.67 (1.38, 2.00)               | 1.34 (1.19,1.50)                          | 1.91 (1.42, 1.91)*                          |
| Control (1,150)                           |                                   |                                             |                                    |                                 |                                           |                                             |
|                                           | $1.4 	imes 10^{-57}$              | 1.1 × 10 <sup>-66</sup>                     | $1.3 \times 10^{-15}$              | $7.9 	imes 10^{-8}$             | $1.3 	imes 10^{-6}$                       | $1.9 	imes 10^{-5}$                         |
| GA (465) vs. Large Drusen (529)           | 1.38 (1.11, 1.73)                 | 1.26 (1.02, 1.55)                           | 1.12 (0.81, 1.55)                  | 1.22 (0.93, 1.60)               | 1.09 (0.91,1.30)                          | 1.12 (0.72, 1.73)                           |
|                                           | $4.3 	imes 10^{-3}$               | 0.032                                       | 0.48                               | 0.15                            | 0.36                                      | 0.62                                        |
| Neovascular (1,163) vs.                   | 1.13 (0.95, 1.35)                 | 1.79 (1.50, 2.13)                           | 1.07 (0.83, 1.39)                  | 0.99 (0.80, 1.24)               | 1.06 (0.92,1.23)                          | 1.30 (0.88, 1.92)                           |
| Large Drusen (529)                        |                                   |                                             |                                    |                                 |                                           |                                             |
|                                           | 0.16                              | $4.3 	imes 10^{-11}$                        | 0.59                               | 0.95                            | 0.43                                      | 0.19                                        |
| Neovascular (888) vs. GA (465)            | 0.76 (0.61, 0.93)                 | 1.36 (1.13, 1.63)                           | 0.90 (0.67, 1.20)                  | 0.78 (0.62, 1.00)               | 0.95 (0.81,1.12)                          | 1.39 (0.93, 1.39)                           |
|                                           | 0.009                             | 0.0009                                      | 0.47                               | 0.046                           | 0.54                                      | 0.11                                        |

Values are odds ratio (95% confidence interval), with P value below.

\*Entry corresponding to the largest odds ratio in that column.

PNAS PNAS

#### THE CAPT INVESTIGATIVE GROUP- Genetic Testing Subset West Coast Retina, San Francisco, CA

Robert N. Johnson, MD Everett Ai, MD H. Richard McDonald, MD Margaret Stolarczuk, OD

#### University of South Florida Eye Institute, Tampa, FL

Peter Reed Pavan, MD Karina K. Billiris, MD Mohan Iyer, MD Matthew M. Menosky, MD Scott E. Pautler, MD Sharon M. Millard, RN, COT

#### Emory Eye Center, Atlanta, GA

PNAS PNAS

Baker Hubbard III, MD Thomas Aaberg, Sr., MD Lindy DuBois, MEd, MMSC, CO, COMT

#### Northwestern University, Chicago, IL

Alice Lyon, MD Susan Anderson-Nelson, MD Lee M. Jampol, MD David V. Weinberg, MD Annie Muñana, RN Zuzanna Rozenbajgier, MA

#### Illinois Retina Associates, Harvey & Skokie IL

David Orth, MD Jack Cohen, MD Matthew MacCumber, MD Celeste Figliulo Liz Porcz

#### Universiuty of Iowa, Iowa City, IA

James Folk, MD H. Culver Boldt, MD Stephen R. Russell, MD Rachel Ivins, CCRC Connie J. Hinz, COT

Ophthalmology & Visual Sciences at the University of Lousiville, Louisville, KY

Charles C. Barr, MD Steve Bloom, MD Ken Jaegers, MD Brian Kritchman, MD Greg Whittington, PsyS

#### **Ophthalmic Consultants of Boston, Boston, MA**

Jeffrey Heier, MD Albert R. Frederick, Jr., MD Michael G. Morley, MD Trexler Topping, MD Heather L. Davis

# Wilmer Ophthalmological Institute, The Johns Hopkins University, Baltimore, MD

Susan B. Bressler, MD Neil M. Bressler, MD Warren Doll, COA

#### Associated Retinal Consultants, Royal Oak, MI

Michael Trese, MD Antonio Capone, MD Bruce R. Garretson, MD Tarek S. Hassan, MD Alan J. Ruby, MD Tammy Osentoski, RN

#### Mayo Clinic, Rochester, MN

Colin A. McCannel, MD Margaret J. Ruszczyk, CCRA

#### Barnes Retina Institute, St. Louis, MO

Gilbert Grand, MD Kevin Blinder, MD Nancy M. Holekamp, MD Daniel P. Joseph, MD, PhD Gaurav Shah, MD Ginny S. Nobel, COT

#### Southeast Clinical Research Associates Charlotte, NC

Andrew N. Antoszyk, MD David J. Browning, MD, PhD Alison H Stallings

#### **Retina Associates of Cleveland, Cleveland & Lakewood, OH**

Lawrence J. Singerman, MD David Miller, MD Michael Novak, MD Scott Pendergast, MD Hernando Zegarra, MD Stephanie A. Schura, COT Sheila Smith-Brewer, CRA, COMT, FOPS

#### The Ohio State University, Columbus, OH

Frederick H. Davidorf, MD Robert Chambers, DO Louis Chorich, MD Jill Salerno, COA

#### **Retina Northwest, Portland, OR**

Richard F. Dreyer, MD Colin Ma, MD Marcia R. Kopfer, COT

#### Casey Eye Institute, Portland, OR

Michael L. Klein, MD David J. Wilson, MD Susan K. Nolte

#### University of Pennsylvania, Philadelphia, PA

Juan E. Grunwald, MD Alexander J. Brucker, MD Josh Dunaief, MD, PhD Stuart L. Fine, MD Albert M. Maguire, MD Robert A. Stoltz, MD, PhD Monique N. McRay

#### Texas Retina Associates, Dallas & Arlington, Texas

Gary Edd Fish, MD Rajiv Anand, MD Rand Spencer, MD Jean Arnwine

PNAS PNAS

#### University of Wisconsin, Madison, Madison, WI

Suresh R. Chandra, MD Michael Altaweel, MD Barbara Blodi, MD Justin Gottlieb, MD Michael Ip, MD T. Michael Nork, MD Jennie Perry-Raymond

#### CAPT Chairman's Office, University of Pennsylvania, Philadelphia, PA.

Stuart L. Fine, MD

#### CAPT Coordinating Center, University of Pennsylvania Philadelphia, PA.

Maureen G. Maguire, PhD Mary Brightwell-Arnold Sandra Harkins Ellen Peskin, MA, CCRP Gui-Shuang Ying, PhD

#### National Eye Institute

Natalie Kurinij, PhD