Supporting Information

Ammirante et al. 10.1073/pnas.0907696107

Fig. S1. (*A*) M14 cells were transfected with either a *bag3* overexpressing (o.e.) vector or a void vector. After 48 h, cells were treated with PEITC (25 μ M). After an additional 18 h, apoptosis was evaluated as the percentage of sub-G₁ cells by propidium iodide staining in flow cytometry. (*B*) M14 cells were transfected with *bag3* siRNA or a control scrambled RNA (200 nM); after 72 h, cells were labeled for 30 min with 150 μ Ci/mL [³⁵S]methionine and [³⁵S]cysteine (ICN Biochemicals), washed, and chased for the indicated time with fresh medium containing unlabeled amino acids and cycloheximide (1 μ M; Sigma) in presence or absence of the proteasome inhibitor MG132 (1 μ M) (Alexis Biochemicals). Cell lysates were obtained and precleared using protein A-Sepharose (Amersham Biosciences), and proteins were immunoprecipitated with anti-IKK_Y or anti-GAPDH antibody (Santa Cruz Biotechnology). Immune complexes were resolved by SDS/PAGE, gels were dried and autoradiographed, and band intensity was quantified by densitometry. (*C*) M14 cells were transfected with *bag3* siRNA, a control scrambled RNA (200 nM) and/or an *hsp70*-specific siRNA (target sequence: 5'-AAG AAC CAG GUG GCG CUG AAC-3'). After 96 h, total cell lysates were analyzed for their content of IKK_Y and BAG3; an antibody recognizing GAPDH was used to monitor equal loading conditions. (*D*) Proposed mechanism for BAG3 modulation of HSP70 association with IKK_Y and its regulation.