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1 Determining the Ais by Using Eigenvectors of the Correlation Matrix.
The data correlation matrix Cij is known to provide useful
information, in particular for the analysis of financial time series
(1–3) or in other fields; e.g., in protein structure analysis (4). The
first, largest, eigenvalue is related to a global trend, and usually
one is interested in the small number of intermediate
eigenvalues: The associated eigenvectors give the relevant corre-
lations in the data—e.g., allows to extract the sectors in financial
time series. Here, making explicit use of our hypotheses, we
extract from the first eigenvector of the correlation matrix the
Ai factors that show how the global trend is amplified or reduced
at the local level.

We have

Cij ¼ AiAj þDij [S1]

where Dij ¼ hGiGji. If ψ is a normalized eigenvector (ψ · ψ ¼ 1)
of C with eigenvalue λ: C · ψ ¼ λψ , we have

C · ψ ¼ ðA · ψÞAþD · ψ : [S2]

We can have A · ψ equal to zero, which implies that ψ is also ei-
genvector forD, which in general is unlikely (there are no reasons
that eigenvectors of D are orthogonal to A). If A · ψ ≠ 0 we then
obtain

λ ¼ A · Aþ A · D · ψ
A · ψ

[S3]

and

ψ ¼ A · ψ
λ

AþD · ψ
λ

: [S4]

For the largest eigenvalue, we will neglect at first order the sec-
ond term of the right-hand side of this last equation, which leads
to ψ ∝ A. Because ψ is normalized, we obtain

ψ ≈
A
ffiffiffiffiffiffiffiffiffiffiffi

A · A
p : [S5]

This approximation is justified if A · D · ψ is small compared to
A · A and thus

A · D · A
ðA2Þ2 ≪ 1. [S6]

Because A · A ¼ OðNÞ, this approximation is justified if A · D · A
is of order N and not of order N2. This is correct if D is diagonal
(which means that the external components are not correlated
hGiGji ∝ δij), but also if the number of nonzero terms of Dij is
finite compared to N, or in other words if D is a sparse matrix.

We compared the values of Ai computed with the method
exposed in the text and with the eigenvector method. Results
are reported in the Figs. S1, S2, and S3.

We see that indeed for the crime rates in the United States and
in France, Dij is indeed negligible, which demonstrate that the
correlations of the internal contributions between different states
in the United States are negligible. This is not the case for the
stocks in the Standard and Poor’s 500 Index (S&P 500) where
we can observe (small) discrepancies between the two methods,
a result which supports the idea of sectors in the S&P 500.

2 Scaling. We show that the scaling σexti ∼ hf ii observed by de
Menezes and Barabasi in (5, 6) is actually built in the method
proposed by these authors: it is a direct consequence of their
definitions of the internal and external parts, and it does not
depend on the data structure.

Indeed, let f iðtÞ; t ¼ 1;…; T; i ¼ 1;…; N be an arbitrary data-
set such that hf̄ i ≠ 0. For i ¼ 1;…; N, following (5) define AMB

i
by

AMB
i ≡ hf ii

hf̄ i [S7]

and fMB;ext
i ðtÞ by

fMB;ext
i ðtÞ≡ AMB

i f̄ ðtÞ: [S8]

Then, from these definitions and without any hypothesis or con-
straint on the data other than hf̄ i ≠ 0, one has

hfMB;ext
i i ¼ AMB

i hf̄ ðtÞi ¼ hf ii [S9]

and

hðfMB;ext
i Þ2i ¼ ðAMB

i Þ2hf̄ ðtÞ2i: [S10]

Hence

ðσMB;ext
i Þ2 ¼ ðAMB

i Þ2σ2f ¼ hf ii2
σ2f

hf̄ i2 [S11]

with

σ2f ≡ hf̄ ðtÞ2i − hf̄ ðtÞi2: [S12]

Hence, one has always

σMB;ext
i ¼ σf

jhf̄ ij jhf iij: [S13]

The dispersion of the external component, if defined from [S7]
and [S8], is thus exactly proportional to the mean value of the
local data.

3 Synthetic Series: Correlated Random Walkers. We considered the
case where the external trend is

FðtÞ ¼ sinðωtÞ: [S14]

The Gaussian noises are given by

ξiðtÞ ¼ α∑
M

j¼1

uð0Þj ðtÞ þ ∑
N

j¼Mþ1

uðiÞj ðtÞ [S15]

where the uð0Þj ðtÞ and uðiÞj ðtÞ are independent, uniform random
variable of zero mean and variance equal to 1∕12. In this case,
the correlation between different noises are governed by the
parameters α and M

ξiξj ¼
α2M
12

þ N −M
12

δij: [S16]

When M ¼ 0, the variables ξi and ξj are independent (for i ≠ j)
and we can monitor the correlations by increasing the value
ofM. We plot N ¼ 100 random walkers in the usual uncorrelated
case in Fig. S4 and in presence of correlations in Fig. S5.
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In this simple case the exact result is given by wðtÞ ¼ FðtÞ,
ai ¼ 1, and giðtÞ ¼ ξiðtÞ. The important condition for the validity
of the method is given by AiAj ≫ hGiGji and is given here by

1 ≫ α2M: [S17]

For M ¼ 0, the random noises are independent and our meth-
od is very accurate as shown in the main text.

More generally, to assess quantitatively the efficiency of the
method, we compute the Pearson correlation coefficient between
the exact f inti ðtÞ and the estimate gi computed with the method.
We plot, in Fig. S6, this coefficient versus α2M. This figure con-
firms the fact that our method is valid and very precise provided
that the correlations between local contributions are not too large
(here α2M < 4).

4 Dependence of the ai on the Time Interval. We can compute the
quantities ai for the interval ½t0; t� and by letting t vary. We then
obtain for the crime in the United States (in the case of the crime
rates in France, the dataset is not large enough) the Fig. S7. This
figure shows that in the case of the crime rate in the United
States, the ai converge to a stationary value, independent of
the time interval, provided it is large enough. Our method will
then lead to reliable results constant in time.

We also tested our method on the financial time series given by
the 500 most important stocks in the United States economy
(Fig. S7), and which composition leads to the S&P 500 index.
Here the

“local” units are the individual stocks (i ¼ 1;…; N ¼ 500), and
the (naive) average—analogue to a national average—is precisely
the S&P 500 index time series. We study the time series for these
stocks on the 252 days of the period October 2007 through
October 2008 and we compute the global pattern wðtÞ, the coef-
ficients ai, and the parameters ηi (defined in the text) computed
for the time window ½10∕2007; t� for t varying from April 2008 to
September 2009. These quantities ηi measure quantitatively the
importance of local versus external fluctuations for the stock i.
The results for the ηis are shown in Fig. S8 and display large
variations, particularly when we approach October 2008, a period
of financial crisis. It is therefore not completely surprising that
the ηi (and the ais) in this case fluctuate a lot. In some sense,
we can conclude that the ais correspond to an average suscept-
ibility to the global trend, are not invariable quantities and can
vary for different periods. We thus see on this example, that it
is important to check the stability of the coefficients ai which
is an crucial assumption in our method. The variations of these
coefficients is however interesting and further studies are needed
to understand these variations.

5 Obesity in the United States: Variances for the External and Internal
Contribution.For the obesity rate series, we compare the variances
of the internal (gi) and the external (aiw) contributions. We
observe in Fig. S9 that the variance of the external contribution
became dominant after the year ≈2000.
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Fig. S1. Comparison of the Ai computed with expressions in the text (Eq. 16) and with the components of the eigenvector corresponding to the large ei-
genvalue of Cij in the case of crime rates in the United States.
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Fig. S2. Comparison of the Ai computed with expressions in the text (Eq. 16) and with the components of the eigenvector corresponding to the large ei-
genvalue of Cij in the case of crime rates in France.
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Fig. S3. Comparison of the Ai computed with expressions in the text (Eq. S16) and with the components of the eigenvector corresponding to the large
eigenvalue of Cij in the case of the S&P 500.
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Fig. S4. N Uncorrelated random walkers (N ¼ 100, α2M ¼ 0).
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Fig. S5. Random walkers with correlations (α2M ¼ 10).
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Fig. S6. Pearson correlation coefficient between the exact local contribution and the local contribution computed with our method computed for different
values of the correlation (N ¼ 100, results averaged over 100 realizations).
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Fig. S7. Coefficients ai computed in the case of US crime for the interval ½1960; t� with varying t (in years).
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Fig. S8. Coefficients ηi computed for the S&P 500 in the interval ½0; 125þ t� (t is in days in this case).
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Fig. S9. Comparison of internal and external fluctuations for the obesity in the United States. We represent the total variance of the signal (f ), the external
(aiw), and the internal contribution (g). We observe that for the external contribution is dominating since the year 2000.
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