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SI Text
Thermodynamic Limit of Graph Sequences. The infinitely large
system size limit is very important in statistical physics, as the
properties of the studied phenomena are manifested in the most
pure way in this limit. Similarly, in complex network theory the
infinitely large limit graph of a converging graph sequence can be
considered as a “platonic” network exhibiting the fundamental
common properties of the graphs in the sequence in the most
pure way. But under what conditions can we say that a given
sequence of graphs is converging to something nontrivial and
yet sufficiently universal to be conceptually meaningful? A simple
intuitive condition is that the statistical features commonly used
to characterize a network (e.g., degree distribution, clustering
coefficient, etc.) should converge. The actual definition is based
on homomorphisms (adjacency preserving maps) as follows. For
two simple graphs F and G, let homðF;GÞ denote the number of
homomorphisms from V ðFÞ (the nodes in F) to V ðGÞ (the nodes
in G). The homomorphism density tðF;GÞ is defined as the
probability that a random map from V ðFÞ to V ðGÞ is a homo-
morphism, given by

tðF;GÞ ¼ homðF;GÞ
jV ðGÞjjV ðFÞj : [S1]

A sequence ðGnÞ of graphs is convergent, if the sequence tðF;GnÞ
has a limit for every simple graph F. Loosely speaking, this con-
dition can be interpreted as the convergence of the probability of
finding any given finite subgraph in the sequence of networks.

We note that when G has bounded average degree and F is
connected, it is more natural to normalize the homomorphism
density by dividing with jV ðGÞj instead of jV ðGÞjjV ðFÞj. Therefore,
we let injðF;GÞ denote the number of injective homomorphisms
from graph F to graph G and define

sðF;GÞ≡ injðF;GÞ
jV ðGÞj : [S2]

[Thus, sðF;GÞ is the average number of labeled copies of F, such
that a specified node of F goes on a specified node of G.]

Convergent graph sequences are related to 2D functions in a
nontrivial way (1, 2). First of all, we can construct a convergent
graph sequence using a symmetric measurable function,
0 ≤ W ðx; yÞ ≤ 1, defined on the unit square as follows. For a
given network size N, we distribute N points independently, uni-
formly at random on the ½0; 1� interval. These points correspond
to the nodes in the network, and each pair of nodes is linked with
the probability given byW ðx; yÞ at the coordinate of the according
points. In the N → ∞ limit the obtained graph sequence is con-
verging. What is even more surprising, it can be proven that we
can represent any convergent graph sequence by a 2D function,
since for any convergent graph sequence one can find a W ðx; yÞ
providing the same limiting subgraph densities.

The average degree of nodes in a random graph generated
from a given W ðx; yÞ using the construction above can be given
simply as

hdi ¼ N
ZZ

W ðx; yÞdxdy: [S3]

Thus, in the N → ∞ limit the obtained network becomes dense.
In contrast, real networks are usually sparse in the sense that their

average degree is not expected to grow with increasing size. A
solution to this problem was proposed by Bollobás et al., by
redefining the linking probabilities as W ðx; yÞ∕N, resulting in a
network with an average degree independent of N. They showed
that, depending on the choice of W ðx; yÞ, a wide range of sparse
networks can be generated.

Our approach is different from this method in that instead of
using a construction into which we build in the level of complexity
from the beginning, we generate complexity by using tensorial
products of increasing power as N → ∞. This is a qualitatively
new picture, corresponding to reality to a higher degree (larger
graphs are more complex/inhomogeneous/structured in nature
than smaller graphs). In addition, we achieve this using a rela-
tively simple construction.

The Multifractal Link Probability Measure. As explained in the main
text, our link probability measure corresponds to a multifractal
defined on the unit square. This can be best envisaged as a surface
getting rougher and rougher at each iteration (as shown in Fig. 1
of the main text), where the height of the surface signals the
measure associated to the rectangle beneath. The “roughening”
is governed by Eqs. 1–2) in the main text: When iterated, each
rectangle is divided to smaller rectangles following the pattern
given by the generating measure, and the measure associated
to these new rectangles is given by the measure of the starting
rectangle, multiplied by the corresponding element of pij defining
the generating measure. (In parallel, the ratio between the area of
a new rectangle divided by the area of starting rectangle is equal
to the area of the corresponding rectangle in the generating
measure.) For clarity, in Fig. S1 we show the expressions for
the elements of the link probability measure displayed in Fig. 1
of the main text.

Entropy of the Generated Graph Ensemble. The concept of entropy
in the context of graph ensembles was introduced by Bianconi in
ref. 3 to measure the complexity or the level of order in networks.
The graph ensembles considered there are analogous to the
microcanonical ensemble in statistical physics: All configurations
fulfilling a chosen criterion (e.g., a fixed average degree or a fixed
degree sequence) are equally probable. Thus, the corresponding
entropy is equal simply to the logarithm of the number of all
possible graphs:

S ¼ lnN: [S4]

In our case the probability to obtain a given network configura-
tion from a fixed link probability measure is strongly dependent
on the configuration. Therefore, our graph ensemble is more
close to the canonical ensemble, where the entropy can be
defined as

S ¼ −∑
G

pG ln pG; [S5]

with the sum running over all possible graphs and pG denoting the
probability of a given configuration G. In the special case of
equally probable configurations (pG ≡ p for allG), due to the nor-
malization criterion∑GpG ¼ 1 the above formula for S simplifies
to expression [4] given by Bianconi. However, in general for a
graph G generated by the multifractal graph generator the pG
can be given as
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pG ¼
Y

ðI;JÞ∈G
pijðkÞ

Y
ðI;JÞ∉G

ð1 − pijðkÞÞ; [S6]

where the first product is over all links, the second product is over
all missing links, and pijðkÞ denotes the link probability measure at
the coordinates corresponding to the node pair ðI; JÞ.

Although Eqs. 5–6 give a simple formulation of the entropy, its
evaluation is far from trivial due to the very large number of
possible graphs. In fact, any configuration with N nodes is a
possible outcome of our method from the empty graph with ab-
solutely no edges to the completely filled graph with NðN − 1Þ∕2
connections. Thus, the total number of graphs is equal to
N ¼ 2NðN−1Þ∕2, which means that the exact evaluation of S is only
plausible for graphs with a very few nodes only. For larger number
of nodes one can try to reveal the frequency of graphs, ρðpGÞ in
function of pG with sampling of the possible graphs. With the help
of ρðpGÞ the number of graphs with pG ∈ ½p0G; p00G� can be

expressed as N∫ p00G
p0G
ρðpGÞdpG, and the entropy defined in Eq. 5

can be formulated as

S ¼ −N
Z

pG lnðpGÞρðpGÞdpG: [S7]

However, our preliminary experiments based on sampling
showed that ρðpGÞ shows a hugely varying nature; thus, it must
be explored with a number of samples of similar order to the
actual number of graphs to get a reasonable estimate of
S. Nevertheless, these experiments indicated that the entropy
is increasing faster than linear, but slower than quadratic in func-
tion of the number of nodes. This means that similarly to the case
of, e.g., graph ensembles with fixed degree sequence, the entropy
per node is increasing with the system size; however, its increase is
slower than in a graph ensemble without any restriction on the
structure of graphs.

Limiting Cases of the Multifractal Model. A shortcoming of our
model is that it can lead to a network in which the majority of
nodes are isolated in the N → ∞ limit. However, as we shall
see, this effect is negligible for graphs in the size range of real
networks.

Analytical results. In general, if W 1ðx; yÞ;W 2ðx; yÞ;…;Wkðx; yÞ is a
sequence of symmetric measurable functions on the unit square
[with 0 ≤ Wkðx; yÞ ≤ 1 for any k], let us define wkðxÞ as the
average linking probability for a node at position x given by

wkðxÞ ¼
Z

1

0

Wkðx; yÞdy: [S8]

Similarly, let ωk denote the average link probability for the whole
network, which can be expressed as

ωk ¼
Z

1

0

wkðxÞdx: [S9]

Let us choose the number of nodes Nk associated to Wkðx; yÞ in
such a way that the average degree of nodes converges to a con-
stant (nonzero) hdi for k → ∞, and thus

Nkωk → hdi: [S10]

(This means that the number of links is around hdi∕2.) The de-
gree distribution of a node at position x can be given by a binomial
distribution as

ρðd; xÞ ¼
�
Nk

d

�
wkðxÞd½1 − wkðxÞ�Nk−1−d: [S11]

In the thermodynamic limit this can be approximated by a Poisson
distribution written as

ρðd; xÞ≃ ½NkwkðxÞ�d
d!

e−NkwkðxÞ: [S12]

The degree distribution of the whole network is obtained by in-
tegrating ρðd; xÞ, resulting in

ρðdÞ ¼ 1

d!

Z
1

0

½NkwkðxÞ�de−NkwkðxÞdx: [S13]

In particular, the probability that a randomly chosen node will be
isolated (having degree zero) is

ρðd ¼ 0Þ ¼
Z

1

0

e−NkwkðxÞdx: [S14]

From [9] and [10] it follows that the average value of wkðxÞ is
around hdi∕Nk. In case wkðxÞ is actually independent of x, then
wkðxÞ ¼ hdi∕Nk, and

ρðd ¼ 0Þ≃ e−hdi: [S15]

However, if wkðxÞ is such that its typical value is much smaller
than its average, then typically e−NkwkðxÞ ≃ 1 resulting in

ρðd ¼ 0Þ≃ 1; [S16]

which means that the majority of nodes becomes isolated. The
condition for avoiding this degeneracy can be formulated asZ

1

0

e−NkwkðxÞdx < c; [S17]

where c < 1 is a constant.
In case of the multifractal graph generator (or a more general

“tensoring” construction), the above condition is not fulfilled, un-
less wkðxÞ is independent of x. As mentioned in the main text, by
using a measure preserving bijection between ½0; 1� and ½0; 1�k, our
model can be formulated in a more general form using the ten-
sorial product Wk ≡W⨂ k ¼ W ⊗ ⋯ ⊗ W defined as

W ðx1;…; xk; y1;…; ykÞ ¼ W ðx1; y1Þ…W ðxk; ykÞ: [S18]

The marginals [8] in this representation are given by

wkðx1;…; xkÞ ¼
Z
½0;1�k

W ðx1; y1Þ…W ðxk; ykÞdy1…dyk

¼ wðx1Þ…wðxkÞ; [S19]

where wðxÞ ¼ ∫ 1
0W ðx; yÞdy. Similarly, [9] is transformed into

ωk ¼
Z
½0;1�k

wkðx1;…; xkÞdx1…dxk ¼ ωk; [S20]

where ω ¼ ∫ 1
0wðxÞdx. Thus, according to [10], we should

choose Nk ≃ hdi∕ωk.
Unfortunately, these functions do not satisfy condition [17] un-

less wðxÞ is constant. Indeed, if ðx1;…; xk; y1;…; ykÞ is a random
point in ½0; 1�k, then
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lnwkðx1;…; xkÞ ¼ lnwðx1Þ þ⋯þ lnwðxkÞ ∼ k
Z

1

0

lnwðxÞdx
[S21]

almost surely by the law of large numbers. Let α ¼
expð∫ lnwðxÞdxÞ, then α < ω by the Jensen inequality (except
if w is constant), and the value of wk is almost always close to
αk, while its average is ωk. Since ðα∕ωÞk → 0 if k → ∞, this shows
that if [17] holds, then wðxÞ is constant.

On the other hand, if wðxÞ ¼ ω for any x, then the expected
degree of the nodes becomes independent from their position
and the degree distribution converges to a Poisson distribution,
just like in case of an Erdős–Rényi graph. In this case it is also
easy to calculate the number of copies of any connected graph F
with l nodes in a graph Gk obtained from Wk. There are
NkðNk − 1Þ…ðNk − lþ 1Þ ∼ Nl

k ways to map V ðFÞ into ½nk�
injectively, and for each map, the probability that it is a homo-
morphism is tðF;WkÞ ¼ tðF;W Þk. Hence

EðinjðF;GkÞÞ ∼Nl
ktðF;W Þk ¼ hdil

�
tðF;W Þ

ωl

�
k
: [S22]

Since we have a sparse graph, we want to normalize this by Nk; so
the normalized number of copies of F is

EðsðF;GkÞÞ ¼
homðF;GkÞ

Nk
∼Nl−1

k tðF;W Þk ¼ hdil−1
�
tðF;W Þ
ωl−1

�
k
:

[S23]

For example, the normalized number of triangles is

1

6
sðK3; GkÞ ∼ hdi2

�
tðK3;W Þ

ω2

�
k
: [S24]

It is easy to see that if wðxÞ ¼ ω is constant, then

tðF;W Þ ≤ ωl−1; [S25]

where equality holds if and only if F is a tree or W is an equiva-
lence relation such that there is a partition S1∪⋯∪Sm ¼ ½0; 1� and

W ðx; yÞ ¼
�
1; if x; y ∈ Si for some i;
0; otherwise. [S26]

From [23] and [25] we gain

EðsðF;GkÞÞ

→

�
hdil−1; if F is a tree or W is an equivalence relation;
0; otherwise.

[S27]

Using high concentration inequalities one can prove that this con-
vergence happens almost surely (not just in expectation). We see
from [27] that the sequenceGk is convergent with probability 1 in
the Benjamini–Schramm sense.

There are a number of possibilities which one could try to cure
the degeneracy of the thermodynamic limit of our model shown
here; however, these are out of the scope of the present study. We
could modify the tensoring construction by adding to W⨁ k a
constant ck tending to 0 reasonably slowly. Another possibility
is to modify W⨁ k to ðW⨁ kÞak , where ak → 0.

Numerical Studies. Fraction of isolated nodes.Next, let us investigate
the magnitude of the above effect for graphs in the size range of

real networks. For this purpose we generated networks from
randomly chosen generating measures (with m ¼ 4, equal-sized
boxes) iterated from k ¼ 1 to k ¼ 11. The number of nodes at k ¼
1 was set to 1,000 and to 5,000, respectively, and for k > 1 it was
adjusted using Eq. 3 in the main text. (Thus the average degree of
the graphs remained the same during the iterations.) In Fig. 2. we
show the results obtained by averaging over 1,000 samples for
both settings by plotting ρðd ¼ 0Þ as a function of N. In spite
of the increasing tendency of the curves, at the last iteration with
network sizes above 109, the fraction of isolated nodes is still very
low. Thus, the effect of isolated nodes becoming dominant is
negligible on the scale of real world applications.

Absence of convergence in the realistic size range. In spite of the
analytical results for the convergence in the thermodynamic limit,
the degree distribution often shows an oscillatory behavior in the
size range of real networks. This is shown in Fig. 3 for an m ¼ 3
generating measure iterated from k ¼ 1, N ¼ 100 to k ¼ 11,
N ¼ 4.24 · 108. As k is getting larger, the more oscillations can
be observed in ρðdÞ towards the large degrees.

Calculating Statistical Distributions. A serious advantage of our
model is that the statistical properties characterizing the network
topology can be calculated analytically. In the Appendix of the
main text we give a derivation for the degree distribution, based
on the generating-function formalism. The definition and the
most important properties of the generating functions can be
summarized as follows.

The generating functions. If a random variable ξ can take non-
negative integer values according to some probability distribution
Pðξ ¼ nÞ≡ ρðnÞ, then the corresponding generating function is
given by

GρðxÞ≡ hxξi ¼ ∑
∞

n¼0

ρðnÞxn: [S28]

The generating function of a properly normalized distribution is
absolute convergent for all jxj ≤ 1 and hence has no singularities
in this region. For x ¼ 1 it is simply

Gρð1Þ ¼ ∑
∞

n¼0

ρðnÞ ¼ 1. [S29]

The original probability distribution and its moments can be
obtained from the generating function as

ρðnÞ ¼ 1

n!
dnGρðxÞ
dxn

����
x¼0

; [S30]

hξli ¼ ∑
∞

n¼0

nlρðnÞ ¼
��

x
d
dx

�
l
GρðxÞ

�
x¼1

: [S31]

Finally, if η ¼ ξ1 þ ξ2 þ⋯þ ξl, where ξ1; ξ2;…; ξl are indepen-
dent random variables (with nonnegative integer values), then
the generating function corresponding to Pðη ¼ nÞ≡ σðnÞ is
given by

GσðxÞ ¼ hxηi ¼
�YI

i¼1

xξi
�

¼
YI
i¼1

hxξii ¼ Gρ1ðxÞGρ2ðxÞ…GρlðxÞ:

[S32]
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The clustering coefficient. Similarly to the degree distribution, the
clustering coefficient of nodes falling into the same row of the
link probability measure is expected to be the same. The
clustering coefficient of a node in row i can be obtained by
calculating the number of triangles containing the node,

divided by the number of link pairs originating from the node.
Since the triangles are equivalent to link pairs originating from
the node having their other end connected by a third link, the
expected clustering coefficient of a node in row i can be
given as

hCiðkÞi ¼
1
2∑

mk

j¼1
½ljðkÞ�2½pijðkÞ�2pjjðkÞ þ∑

mk

j¼1 ∑
mk

q¼jþ1
ljðkÞlqðkÞpijðkÞpiqðkÞpjqðkÞ

1
2∑

mk

j¼1
½ljðkÞ�2½pijðkÞ�2 þ∑

mk

j¼1 ∑
mk

p¼jþ1
ljðkÞlqðkÞpijðkÞpiqðkÞ

: [S33]

The first term in both the numerator and the denominator
corresponds to the link pairs for which the other end of the links
point to the same row j, whereas the second terms give the con-
tribution from link pairs connecting our node in row i to distinct
rows j and q.

The average nearest neighbors degree. Finally, we mention that the
degree correlations can be calculated from pijðkÞ [and liðkÞ] as
well. Here we derive the expression for the average nearest neigh-
bors degree, dNN , as a function of the node degree. This is one of
the most simplest quantity characterizing the degree correlations:
An increasing curve corresponds to an assortative network,
whereas a decreasing one signals disassortative behavior.
The average degree of the neighbors of a node from row i can
be given as

dðkÞNN;i ¼ ∑
mk

j¼1
bpijðkÞljðkÞhdjðkÞi

∑
mk

j¼1
pijðkÞljðkÞ

: [S34]

The average degree of the neighbors of a node with degree d can
be given as a sum over the possible dðkÞNN;i, multiplied by the

conditional probability pðkÞðijdÞ that the node is from row i, given
that its degree is d:

dðkÞNNðdÞ ¼ ∑
mk

i¼1

pðkÞðijdÞdðkÞNN;i: [S35]

These conditional probabilities can be obtained as follows. The
number of nodes from row i with degree d is niðkÞρðkÞi ðdÞ, whereas
the total number of nodes with degree d is nρðkÞðdÞ. The probabi-
lity that a node is from row i given that its degree is d is the ratio of
these two:

pðkÞðijdÞ ¼ niðkÞρðkÞi ðdÞ
nρðkÞðdÞ ¼ liðkÞρðkÞi ðdÞ

ρðkÞðdÞ : [S36]

By substituting [36] and [34] into [35] we get

dðkÞNNðdÞ ¼
1

ρðkÞðdÞ∑
mk

i¼1

liðkÞρðkÞi ðdÞ∑
mk

j¼1
pijðkÞljðkÞhdjðkÞi

∑
mk

j¼1
pijðkÞljðkÞ

: [S37]
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Fig. S1. The link probability measure shown in Fig. 1 of the main text with the explicit expressions of pijðkÞ displayed as well. The generating measure is
symmetric, and thus p21 ¼ p12.
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Fig. S2. The ratio of isolated nodes in function of the network size for graphs obtained from iterating random generating measures from k ¼ 1 to k ¼ 11,
averaged over 1,000 samples. The number of nodes at iteration k ¼ 1 was chosen to be Nðk ¼ 1Þ ¼ 1;000 (circles) and Nðk ¼ 1Þ ¼ 5; 000 (triangles).

Fig. S3. The degree distribution obtained from Eq. 2 in the main text for anm ¼ 3 generating measure iterated from k ¼ 1, N ¼ 100 to k ¼ 11, N ¼ 4.24 · 108.

Palla et al. www.pnas.org/cgi/doi/10.1073/pnas.0912983107 6 of 6

http://www.pnas.org/cgi/doi/10.1073/pnas.0912983107

