Supporting Information

Shen et al. 10.1073/pnas.1002968107

Fig. S1. Stimulated GTPase reactions between SRP and wild-type or mutant FtsY, determined as described in *Materials and Methods*. The data were fit to the Michaelis–Menten equation, and gave k_{cat} and K_m values of 64.6 min⁻¹ and 0.940 μ M for wild-type FtsY (•), 23.3 min⁻¹ and 27.7 μ M for K399A (•), 20.7 min⁻¹ and 1.87 μ M for R402A (□), and 35.3 min⁻¹ and 2.37 μ M for K406A (■).

Fig. S2. Equilibrium titration of the SRP–FtsY–K399A complex formed in GppNHp using FRET. Nonlinear fits of data gave a K_d value of 97.4 nM, consistent with the value of 106 nM calculated from the ratio of association and dissociation rate constants ($K_d = K_{off}/K_{oni}$; Fig. 1 B and C). For comparison, the K_d value for the wild-type SRP–Ftsy complex was 92 nM from equilibrium titrations and 21–36 nM from the ratio of dissociation rate constants (ref. 18 and Fig. 1 B and C).

Fig. S3. Effect of FtsY mutations on the rate of complex assembly between mutant SRP(GAAU) and FtsY, determined from the k_{cat}/K_m values in the stimulated GTPase assay as described in the text. The data were fit to Michaelis–Menten equation, and gave k_{cat}/K_m values of 3.8×10^5 , 4.1×10^5 , 1.4×10^5 , and 1.2×10^5 M⁻¹ min⁻¹ for wild-type FtsY (•), FtsY-K399A (•), FtsY-E475K (□), and FtsY-T307W (•), respectively.

Fig. S4. Dependence of Ffh–FtsY complex assembly kinetics on the NaCl concentration in the presence (*A*) and absence (*B*) of SRP RNA. Complex assembly rate constants were determined using the FRET assay as described in the text. All reactions were carried out in solutions that contain a constant concentration of 50 mM KOAc and 2 mM Mg(OAc)₂. Linear fits of data gave complex assembly rate constants of 7.37×10^4 , 3.05×10^4 and 5.09×10^3 M⁻¹ s⁻¹ with 0, 100 and 200 mM NaCl, respectively, for reactions in the presence of the SRP RNA (*A*), and 159, 212 and 77 M⁻¹ s⁻¹ with 0, 100 and 200 mM NaCl, respectively, for reactions in the absence of the SRP RNA (*B*).

Fig. S5. FtsY-Lys399 plays an essential role in cotranslational protein targeting. *Upper* SDS-PAGE analysis of the translocation of pPL by wild-type FtsY and mutant FtsY-K399A. pPL and PL denote the precursor and mature forms of the model substrate preprolactin, respectively. *Lower* Quantification of the results from SDS-PAGE.