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Figure A1 Average spatial distribution of fixation locations across the search area for the 1st, 3rd and 5th 

saccades.  The color temperature indicates the relative proportion of fixations at each display location.  

The dashed circles (15 deg diameter) indicate the display region containing the 1/f noise texture.  

Humans and ideal start with relatively small saccade lengths.  Humans have an initial bias for fixations 

along the horizontal meridian and a later bias for fixations along the vertical meridian, whereas the ideal 

has an initial bias for the vertical meridian and a later bias for the horizontal meridian.   
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Figure A2.  Average spatial distribution of fixation locations after the 2nd saccade for the human 

searchers.  The dashed circles indicate the display region containing the 1/f noise texture. 

 

Derivation of ideal visual searcher for static external noise 
Here we derive the ideal searcher for the case of static external noise and dynamic (temporally 
uncorrelated) internal noise.  In the supplementary material to Najemnik & Geisler (2005) we 
derive the ideal searcher for the easier case where both the external and the internal noise are 
dynamic.  The formulas were derived via two separate methods: a direct derivation from the joint 
probability distributions (WG) and a derivation based upon the theory of Kalman filtering (JN). 
 

Characterizing visual system 
 
To derive the ideal searcher it is necessary to consider the meaning of the visibility map in more 
detail.  To do this we describe the ideal detector for a known sine wave target presented at a 
known location in a single interval forced choice task. 
 
First, consider an ideal detector with direct access to the retinal image; that is, an ideal 
detector for a non-foveated visual system.  Each trial of a single interval forced choice task 
consists either of background noise alone or background noise plus the sine wave target.  The 
ideal detector multiplies the retinal image with a template of the sine wave target and then 
integrates the product to obtain a template response W (i.e., the template response is the cross 
correlation of the target with the retinal stimulus).  The magnitude of this template response is 
then compared to a criterion; the optimal behavior (to maximize detector’s accuracy) is to 
respond “target present” if the template response exceeds the criterion and “target absent” 
otherwise.  The accuracy of this ideal detector is determined by the signal-to-noise ratio, d′, 
which is the average difference in the template response to the background plus target and 
background, divided by the standard deviation of the template response.  The expected value of 
the template response to background plus target is proportional to the target contrast and the 
variance of the template response is proportional to the noise contrast power of the background, 
and hence 
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where, c is the RMS contrast of the target, ne  is the contrast power of the noise background, and 
A and B are proportionality constants. 
 
Now consider an ideal detector in a foveated visual system.  In this case, the ideal detector does 
not have direct access to the retinal image, but instead to a representation that is degraded by 
variable spatial resolution and neural noise.  Reduced spatial resolution due to spatial filtering 
will effectively reduce the contrast of a sine wave target, but will have little effect on the shape 
of the target, thus the same template can be used in regions of reduced resolution, although the 
responses to the target and background will be smaller.  (We have verified that for our target and 
for eccentricities as large as the radius of our display, the appropriate template shape changes 
negligibly for transfer functions that match human contrast sensitivity functions.)  Furthermore, 
the neural noise will add a term ( ); , nC c ep  to the variance of the template responses.  In general, 
this neural noise term may depend on the target contrast, the background noise power, and the 
retinal position ( ),x y=p .  Therefore, the visibility map of an ideal detector with a foveated 
visual system is given by 
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where the proportionality factors on the template responses to the target and background now 
vary with retinal position.  Without loss of generality this formula can be simplified by dividing 
numerator and denominator by ( )A p : 
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where ( ) ( )B Aα= p p and ( ) ( ) ( ); , ; ,n nc e C c e Aβ =p p p .  Because the same shaped template is 
used at different eccentricities, the value of α is a constant that does not change with position.  
Equation (A3) gives the visibility map of the ideal detector, once the values of α and β are 
specified for all positions. 
 
We now define the signal-to-noise ratio for an ideal detector limited only by external noise as  
 

( )2 2, /E n nd c e c eα′ =           (A4) 
 
and the signal-to-noise ratio of an ideal detector limited only by the internal inefficiencies as  
 

( ) ( )2 2; , / ; ,I n nd c e c c eβ′ =p p          (A5) 
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Substituting equations (A4) and (A5) into (A3) we find that the detectability of the target at all 
retinal locations can also be written as 
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Representing the search signals and noise 
 
During a fixation interval the ideal searcher captures template responses from all n potential 
target locations. The template responses obtained from all n potential target locations at time step 
t  (on tth fixation) while searcher fixated the display position ( )( )( ), k tk tx y  can be represented as 

n element indexed vector ( ) ( ) ( )( )1 , ,k t k t nk tW WW = , where k  is an index into a list of possible 

fixation locations.  Given all the template responses collected thus far, it then computes the 
posterior probability ( )ip t  that the target is located at each of the potential target locations, 
indexed by i .  If the maximum of the posterior probabilities exceeds a criterion (the value of the 
criterion determines the error rate), then the search is stopped and the location with largest 
posterior probability is reported as the location of the target.  If the criterion is not exceeded, then 
the ideal searcher determines the location to move the eyes that will maximize the probability of 
finding the target after the eye movement is made and the posterior probabilities computed.  It 
then moves its eyes to that location, and the process repeats.  Formally, the template response 
when the searcher fixates location k on tht fixation is ( ) ( )iX +N 0.5ik t ik tW = +  at the actual target 

location ( ),i ix y , and is ( ) ( )j X +N 0.5jk t jk tW = −  at all other locations ( ),j jx y .  The iX  are 

statistical independent samples from a Gaussian distribution with mean zero and variance 21/ Ed ′ , 
and represent the template responses to the external 1/ f  noise. These static noise samples 
remain the same throughout the search trial, and hence Ed ′  does not depend on the fixation 
position ( )k t  or time t.  The ( )ik tN  are independent Gaussian noise samples that are generated for 
each potential target location on each fixation t and added to the static noise sample. These noise 
samples account for observers internal sources of inefficiency, and have mean zero and variance 

( )
2

1/ ,Id j k t⎡ ⎤′ ⎣ ⎦ .  (Note that we have left it implicit that Id ′  and Ed ′   also depend on the target 
contrast and background noise power, since those values are fixed in a given search trial.) 
 

Optimal computation of posterior probabilities 
 

The ideal searcher computes posterior probability in a way that achieves the optimal integration 
of template responses across fixations. To do this, the ideal searcher uses the Bayes rule: 
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where ( )0jp  is the prior probability of the target being at location j. 
 
To evaluate this expression, we will make use of the following formula for the definite integral 
of a product of n univariate Gaussians, which we leave to be verified by the reader:  
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where ( ); ,k kg x μ σ is a Gaussian function of variable x  with mean kμ  and standard deviation 

kσ ; that is, 
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We start by evaluating the likelihood portion of equation (A7).  Conditioning on the external 
noise ( )1, , nx xx = , we have 
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Once we condition on the external noise the responses at each template location become 
statistically independent over time.  Furthermore, we are assuming statistical independence of 
both the external and internal noise over space.  Thus, 
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Now we plug in the appropriate Gaussian distributions for ( )qp x  and ( )( )| , qqk Tp W i x . The static 

portion of performance-limiting noise on the template response is due to the external noise. This 
portion of noise is referred to as static because it remains unchanged throughout the duration of 
each search trial: 
 

( ) 1;0,q q
E

p x g x
d

⎛ ⎞
= ⎜ ⎟′⎝ ⎠

  

 

( )( ) ( ) ( )
1| , ; 0.5,
,q qqk t qk t

I

p W i x g W x
d q k t

⎛ ⎞
= +⎜ ⎟⎡ ⎤′⎝ ⎠⎣ ⎦

 when q i=  

 
and 
 

( )( ) ( ) ( )
1| , ; 0.5,
,q qqk t qk t

I

p W i x g W x
d q k t

⎛ ⎞
= −⎜ ⎟⎡ ⎤′⎝ ⎠⎣ ⎦

 when q i≠  

 
Thus, 
 

( ) ( )( ) ( ) ( )|1
1 1

1 1,..., ,0, ; 0.5 ,
,

n T

q q q i qk k T qk t
q tE I

p i g x g W x dx
d d q k t

W W λ
∞

= =−∞

⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟′ ⎡ ⎤′⎝ ⎠ ⎝ ⎠⎣ ⎦
∏ ∏∫   (A14) 

 
where | 1q iλ =  when q i=  and | 1q iλ =−  when q i≠ .  We can now use formula (A8) to obtain 
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where ( )qk TB  is defined as 
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Substituting equation (A15) into equation (A7), the posterior probability at location i is given by  
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We can simplify by dividing out the multiplying constants in the top and bottom to obtain 
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Dividing the top and bottom of this equation by the top gives, 
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When q i≠  and q j≠  then ( ) ( )| |q jk T q ik TA A= , and thus, 
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Now, we simplify the quantities inside the exponential: 
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Substituting for ( )ik TB  using equation (A16) gives, 
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Finally, substituting equation (A22) (and the equivalent equation for location j) into equation 
(A20) gives: 
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where, 
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This formula is identical to the one given (but not derived) in the supplementary materials for 
Najemnik & Geisler (2005); however, here it is expressed in terms of the external and internal d-
primes. 
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Optimal selection of the next location to fixate 

 
To compute the optimal next fixation point, ( )1optk T + , the ideal searcher considers each 
possible next fixation and picks the location that, given its knowledge of the current posterior 
probabilities and the visibility map, will maximize the probability of correctly identifying the 
location of the target after the next fixation is made and the posterior probabilities computed: 
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Conditioning on the target location gives the following equation: 
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Here we derive a version of this equation that is practical to evaluate in computer simulations.   
 
The posterior probability of each possible target location is given by equations (A23) and (A24), 
thus our job is to derive an expression for ( )( ), 1p C i k T + , the probability of being correct 

given that the true target location is i  and the location of the next fixation is ( )1k T + . 
 
After making the next fixation, the decision rule that would maximize accuracy would be to pick 
the location with the maximum posterior probability.  If one uses that decision rule, then the 
percent correct is equal to the probability that the posterior probability at location i  (now 
regarded as a random variable) will be greater than that at all other locations: 
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To evaluate equation (A26) we condition on the value of the template response observed at the 
target location.  Note that once we condition on the template response, the events 

( ) ( )1 1i jZ T Z T+ > +  become statistically independent.  Thus, 
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Consider an arbitrary term in the product: 
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Now define ( )1ijh T +  to be the quantity: 
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The probability distribution of ( )1jk TW +  is Gaussian with some mean and standard deviation:  

( )1jk Tu +  and ( )1jk Tσ +  which we will derive below.  However, we can now substitute into equation 
(A28): 
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where ( )xφ  is the standard normal density function and ( )xΦ  is the standard normal integral 

function: ( ) 21 1exp
22

x xφ
π

⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜⎝ ⎠
, ( ) 21 1exp

22

x

x y dy
π−∞

⎛ ⎞⎟⎜Φ = − ⎟⎜ ⎟⎜⎝ ⎠∫ . 

Letting  ( )

( )

1

1

ik T

ik T

z u
w

σ
+

+

−
=  we have 

 
( )( )

( )
( ) ( ) ( ) ( )

( ) ( )

( )

( )

1 1 1 1

1 11

, 1

, 1 1

, 1
T ijik T ik T jk T

j i T jk Tjk T

p C i k T

g i k T w u h T u
w dw

g j k T

σ
φ

σσ

∞
+ + + +

≠ + ++−∞

+

⎛ ⎞⎡ ⎤⎡ ⎤+ + + + ⎟⎜ ⎢ ⎥⎣ ⎦ ⎟⎜ ⎣ ⎦ ⎟= Φ −⎜ ⎟⎜ ⎟⎡ ⎤+⎜ ⎟⎟⎜ ⎣ ⎦⎝ ⎠
∏∫

  (A32) 

 
Equation (A32) is the computational formula used in equation (A25) for the selecting the optimal 
next fixation.  Although this formula contains an integral it can be evaluated rapidly using 
numerical integration, because the standard normal density function approaches zero rapidly 
away from the origin. 
 
The last step is to determine the values of ( )1jk Tu +  and ( )1jk Tσ + .  The probability distribution of 

( )1jk TW +  depends upon the prior history of template responses and fixations and the location of 
the target. 
 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )

1 1

1 1

1

, , ,
, , ,

, ,
jk jk T jk T

jk T jk jk T

jk jk T

p W W W z i
p W z W W i

p W W i
+

+

=
= =    (A33) 

 
It follows from equation (A15) that 
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( ) ( ) ( )( )

( )

( ) ( )

( )

( )

( ) ( )

( )

1 22

1
1 | 1

2
1

1 1
22

1
|

2

,
exp

2
, , ,

,
exp

2

T

E I
t

T j ik T

jk T

jk T jk jk T T

E I
t

T j ik T

jk T

d d j k t
A

B
p W z W W i

d d j k t
A

B

π

π

+

=
+ +

+

+

=

′ ′ ⎡ ⎤⎣ ⎦
⎡ ⎤
⎣ ⎦

= =
′ ′ ⎡ ⎤⎣ ⎦

⎡ ⎤
⎣ ⎦

∏

∏
   (A34) 

 

( ) ( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )11 1 | 1 |
2

1

, 1
, , , exp

2

I jk T

jk T jk jk T j ik T j ik T

jk T

d j k T B
p W z W W i A A

Bπ
+ +

+

⎡ + ⎤′ ⎣ ⎦ ⎡ ⎤= = −⎣ ⎦   (A35) 

 
We now evaluate the term inside the exponent 
 

( ) ( )

( ) ( )( )
( ) ( )( )

( )

( ) ( )( )
( ) ( )( )

( )

| 1 |

21 2
|1 22 1

|
1 1

2
2

|22 1
|

1

, 0.5
1 1, 0.5
2 2

, 0.5
1 1, 0.5
2 2

j ik T j ik T

T

I j ijk tT
t

I j ijk t
t jk T

T

I j ijk tT
t

I j ijk t
t jk T

A A

d j k t W
d j k t W

B

d j k t W
d j k t W

B

λ
λ

λ
λ

+

+

+
=

= +

=

=

− =

⎛ ⎞′ −⎡ ⎤⎜ ⎟⎣ ⎦⎛ ⎞ ⎝ ⎠′− − +⎡ ⎤⎜ ⎟⎣ ⎦
⎝ ⎠

⎛ ⎞′ −⎡ ⎤⎜ ⎟⎣ ⎦⎛ ⎞ ⎝ ⎠′+ − −⎡ ⎤⎜ ⎟⎣ ⎦
⎝ ⎠

∑
∑

∑
∑

  (A36) 

 
 
  To simplify our notation we define the following quantities: 
 

( ) ( ) ( )( )2
|, 0.5I j ij i jk tV t d j k t W λ= ⎡ ⎤ −′ ⎣ ⎦         (A37) 

 

( ) ( ) ( )( ) ( )2
|

1 1

, 0.5
T T

I j ij i jk t j i
t t

S T d j k t W V tλ
= =

= ⎡ ⎤ − =′ ⎣ ⎦∑ ∑       (A38) 

 
( ) ( )| 1 |i ik T i ik TA A+ − =  

 

( ) ( )( ) ( )
( )

( ) ( )( ) ( )
( )

2 2
1 2 22 2

1 11

11 , 0.5 , 0.5
2

T T
j i j i

I Ijk t j i jk t j i
t tjk T jk T

S T S T
d j k t W d j k t W

B B
λ λ

+

= =+

⎡ ⎤+
⎢ ⎥= − ⎡ ⎤ − − − ⎡ ⎤ − +′ ′⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
∑ ∑
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( ) ( )( ) ( )
( )

( )
( )

2 2
22

1
1

11 , 1 0.5
2

j i j i
I jk T j i

jk T jk T

S T S T
d j k T W

B B
λ+

+

⎡ ⎤+
⎢ ⎥= − ⎡ + ⎤ − − +′ ⎣ ⎦⎢ ⎥⎣ ⎦

 

 
( )
( )

( ) ( ) ( ) ( )
( )

( )
( )

2 2 2 2

2
1

1 1 2 11
2 , 1

j i j i j i j i j i j i

jk T jk TI

V T V T V T S T S T S T

B Bd j k T +

⎡ ⎤+ + + + +
⎢ ⎥= − − +
⎢ ⎥⎡ + ⎤′ ⎣ ⎦⎣ ⎦

 

 

( ) ( )
( ) ( )

( ) ( )
( )

( ) ( ) ( )

( ) ( )
( )

2

2 21 1|
| | |2

1 11

, 1 21 1 1
2 , 1

Ijk T jk T jk Tj i
j i j i j i

jk T jk T jk TI jk T

B d j k T B BS T
V T V T S T

B B Bd j k T B
+ +

+ ++

⎡ ⎤′− + −⎡ ⎤⎣ ⎦⎢ ⎥= − + − + +
⎢ ⎥′ +⎡ ⎤⎣ ⎦⎣ ⎦

 

 

( )

( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

( )
2

2 2|
| | |2

1 11

, 121 1 1
2 , 1

jk T Ij i
j i q i j i

jk T jk T jk TI jk T

B d j k TS T
V T V T S T

B B Bd j k T B + ++

⎡ ⎤′ +⎡ ⎤⎣ ⎦⎢ ⎥= − + − + +
⎢ ⎥′ +⎡ ⎤⎣ ⎦⎣ ⎦

 

 

( )

( ) ( )

( ) ( )
( ) ( )

( )
2

2

2
11

, 11 1
2 , 1

jk T I
j i j i

jk T jk TI jk T

B d j k T
V T S T

B Bd j k T B ++

⎡ ⎤⎡ + ⎤′ ⎣ ⎦⎢ ⎥= − + −
⎢ ⎥⎡ + ⎤′ ⎣ ⎦⎣ ⎦

 

 

( )

( ) ( )

( ) ( )( ) ( )
( )

( )
2

2
2

2 1

1

, 11 , 1 0.5
2 , 1

jk T I
I jk T j i j i

jk TI jk T

B d j k T
d j k T W S T

Bd j k T B
λ+

+

⎡ ⎤⎛ ⎞⎡ + ⎤′ ⎣ ⎦⎢ ⎥= − ⎡ + ⎤ − −′⎜ ⎟⎣ ⎦⎢ ⎥⎜ ⎟⎡ + ⎤′ ⎝ ⎠⎣ ⎦⎣ ⎦

 

 

( ) ( )

( )
( )

( )
( )

22

1
1

, 11 0.5
2

I jk T j i
jk T j i

jk T jk T

d j k T B S T
W

B B
λ+

+

⎡ ⎤⎡ + ⎤′ ⎣ ⎦= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

     (A39) 

 
Substituting into equation (A35): 
 

( ) ( ) ( )( )

( ) ( )

( ) ( )

( )
( )

( )

( ) ( )

1 1

2

1
12

1 2

, , ,

0.5
, 1 1exp

22
, 1

jk T jk jk T

j i
j i

I jk T jk T

jk T
jk T

I jk T

p W z W W i

S T
z

d j k T B B
BB

d j k T B

λ

π

+

+
+

= =

⎡ ⎤⎡ ⎤
⎢ ⎥− −⎢ ⎥

′ ⎢ ⎥+⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥−
⎢ ⎥
⎢ ⎥′ +⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

     (A40)  

 
Thus, 
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( )

( ) ( )( )
( )

2

1
1

22

1

, 0.5
0.5

,

T

I jk t
t

Tjk T

E I
t

d j k t W
u j i

d d j k t

=
+

=

⎡ ⎤ −′ ⎣ ⎦
= + =

+ ⎡ ⎤′ ′ ⎣ ⎦

∑

∑
      (A41) 

 

( )

( ) ( )( )
( )

2

1
1

22

1

, 0.5
0.5

,

T

I jk t
t

Tjk T

E I
t

d j k t W
u j i

d d j k t

=
+

=

⎡ ⎤ +′ ⎣ ⎦
= − ≠

+ ⎡ ⎤′ ′ ⎣ ⎦

∑

∑
      (A42) 

 
 

( )

( )

( ) ( )

1 22

1
1

2 22

1

,

, 1 ,

T

E I
t

jk T T

I E I
t

d d j k t

d j k T d d j k t
σ

+

=
+

=

′ ′+ ⎡ ⎤⎣ ⎦
=

⎛ ⎞′ ′ ′+ +⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦
⎝ ⎠

∑

∑
     (A43) 

 
In summary, to select the optimal next fixation location we combine equations (A25), (A30), 
(A32), (A41), (A42) and (A43). 
 
We note that there are typos in equations (S15) and (S16) in the supplementary material of 
Najemnik & Geisler (2005); the correct equations are (A41) and (A42) above.  All predictions 
reported in that study and in the current study were obtained using the correct equations. 


